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Abstract

Geometric programs (GPs) and other forms of convex optimization have recently ex-
perienced a resurgence due to the advent of polynomial-time solution algorithms and
improvements in computing. Observing the need for fast and stable methods for mul-
tidisciplinary design optimization (MDO), previous work has shown that geometric
programming can be a powerful framework for MDO by leveraging the mathemati-
cal guarantees and speed of convex optimization. However, there are barriers to the
implementation of optimization in design. In this work, we formalize how the for-
mulation of non-linear design problems as GPs facilitates design process. Using the
principles of pressure and boundedness, we demonstrate the intuitive transformation
of physics- and data-based engineering relations into GP-compatible constraints by
systematically formulating an aircraft design model. We motivate the difference-of-
convex GP extension called signomial programs (SPs) in order to extend the scope
and fidelity of the model. We detail the features specific to GPkit, an object-oriented
GP formulation framework, which facilitate the modern engineering design process.
Using both performance and mission modeling paradigms, we demonstrate the ability
to model and design increasingly complex systems in GP, and extract maximal engi-
neering intuition using sensitivities and tradespace exploration methods. Though the
methods are applied to an aircraft design problem, they are general to models with
continuous, explicit constraints, and lower the barriers to implementing optimization
in design.

Thesis Supervisor: Mark Drela
Title: Professor, Aeronautics and Astronautics
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Chapter 1

Introduction

Modern engineering design, and particularly aerospace design, has come to rely heav-

ily on optimization. Multidisciplinary Design Optimization (MDO) research has

stressed the importance of fast and reliable tools for engineering design [13]. However

most MDO tools suffer from poor time performance, due to the multimodal1 nature

of many engineering design problems. Furthermore, these tools act like black boxes

since they provide point solutions2 without additional information about the design

problem such as sensitivities, which can provide important engineering insight.

In the Convex Engineering Group (CEG), we have sought to improve the en-

gineering design process by leveraging the mathematical guarantees and speed of

convex optimization. Our primary software product is GPkit [3], an open-source,

object-oriented software to help build Geometric Program (GP)-compatible models

and interface with solvers. The seminal works in the field of convex optimization

([1],[5]) and much of CEG’s previous work ([7],[9],[11],[18]) have demonstrated that

geometric programming and its non-log-convex extension signomial programming are

useful for certain kinds of optimization problems, but have yet to formalize why they

facilitate design.

The mathematical restrictions on the form of constraints in the GP formulation

remain the biggest barriers in using optimization in engineering design. Chapter 2

1Multimodal problems have multiple locally optimal solutions.
2A point solution is a design that is optimal for a given mission, but does not consider the

feasibility of other potentially interesting missions.
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will show that the form of the GP actually facilitates the design optimization process

and engineering understanding, rather than impeding it, through the disciplined use

of inequalities to express constraints. Furthermore, GPkit allows for the monitoring of

the boundedness of variables in a model, which facilitates the model building process

and allows engineers to have properly conditioned models. Hence this thesis will

pass on some of the expertise we have developed in the CEG building GP-compatible

models from general non-linear physical models.

Chapter 3 will showcase the extensibility of GP. The formulation of the GP as a

‘bag of constraints’ instead of a hierarchical set of relations confers advantages when

trying to expand the fidelity and scope of models, especially in the conceptual design

stage. Furthermore, the solution to the dual of the GP provides optimal sensitivities3

which allow targeted efforts by engineers to collaboratively improve models.

Chapter 3 will also discuss the features specific to GPkit in facilitating an engi-

neering design process that is streamlined and collaborative, and is compatible with

modern engineering design methodologies. The modularity of the models, as well as

the ability to create vectorized models, variables and constraints allows for a mis-

sion design approach that ensures that requirements both at the sub-system and

complete-system levels are satisfied.

The features of GP and convex optimization in general will be discussed in the

context of an aircraft MDO problem, but the methods discussed are general to other

engineering design problems which have explicit, continuous constraints.

1.1 Distinguishing between design and optimization

It is difficult to find definitions of design and optimization that identify the similarities

and differences between the terms. To understand why GPs facilitate design, it’s

useful to determine what features of optimization create barriers to entry for its use

in design.

3The (optimal) sensitivity is the local expected fractional change in the objective value of the
optimal solution per fractional change in a variable or constraint value [1].
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In the context of this thesis, I will define design as following: To design is to

conceive the form and function of something. In the engineering sense, we can think

about the form as the configuration or the parametrization. The form usually defines

𝑛, the number of degrees of freedom of the system, which has a direct effect on the

size of the feasibility space, as well as the complexity of the problem. On the other

hand, the function is the actual purpose of the things being designed. It is oftentimes

the aspect of the design that we can quantify (i.e. the performance), and has some

physics that can be modeled.

An important aspect of design is that it is a process that explores an 𝑛-dimensional

feasible space of possible solutions. We can think about the feasible set of a design

as all of the designs that satisfy the functional requirements. But without a clear

method of comparing the relative performances of designs, the classical definition of

design implies a class of feasibility problems satisfying a set of constraints that act

on the designer’s parametrization of the problem.

In this thesis, optimization will assume the following definition: To optimize is

to select an element in a set of feasible solutions with the lowest desired objective

value. It is also a process, which is sensitive to the elements contained within the set

(related to the form), and the choice of objective function (related to the function).

In many ways, optimization is a natural extension of design, because it requires an

explicit mathematical representation of the form and function.

By these definitions, both design and optimization explore feasible and infeasi-

ble sets, but differ in a fundamental way. Design is based on feasibility, whereas

optimization seeks optimality. This observation gives insight as to why there is a bar-

rier to using optimization in design. The distinction allows design to be performed

in non-restrictive mathematical forms, since non-linear feasibility problems are much

easier to solve than non-linear optimization problems. Optimization is done in specific

mathematical forms; since most problems of interest are complex, computational time

is a limited resource. These forms can prove an impediment for designers unfamiliar

with optimization to use it.
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1.2 Unifying design and optimization with GP

Geometric programming has developed "in response to a need to solve problems in the

actual world" [5]. GPs and other convex optimization methods have been in develop-

ment since the 1960’s, but have come into the limelight thanks to the development of

polynomial-time algorithms for convex programming [14] and improvements in com-

puting. The form of the GP limits its application to certain kinds of design problems,

especially since GPs generally require explicit, continuous constraints. But for these

problems, GP and convex optimization naturally integrate into the conceptual design

process for three primary reasons.

1. Inequalities help engineering understanding.

The mathematical constraints of the GP force designers to have a proper grasp

of the fundamental tradeoffs and pressures in a design. Traditionally, physical

relations are expressed as equalities. But there is an almost-seamless transition

from fundamental physics to GP-compatible inequalities for certain kinds of

problems, and the GP-compatible form makes boundedness of variables explicit.

This understanding of pressure and boundedness facilitates the conversion of

general physical engineering equations into optimization-compatible constraint

forms. Certain mathematical restrictions of the GP can be partially overcome

through the use of the difference-of-convex (DC) extension of the GP called the

Signomial Program (SP). SPs give us the flexibility to model non-log-convex

functions, as well as allowing designers to explicitly enforce the tightness of

constraints through the use of signomial equalities when the direction of pressure

on variables is not clear.

2. Models are extensible and modular.

Models in GP can be made arbitrarily complex. The ‘bag of constraints’ form

of the GP means that there is no need to reformulate the optimization scheme

as more constraints are added. This makes incremental modeling improvements

straight-forward. The traditional engineering design process is split into con-
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ceptual, preliminary and critical design segments. GP modeling facilitates this

process by allowing ever-increasing levels of complexity.

Gradient-based optimization methods for multimodal, multicomponent systems

often involve convergence loops, as shown in Figure 1-1, which have to be re-

engineered when new constraints are introduced. Furthermore, the designer

has to tune the module for generating new guesses from gradient information,

which is unreliable at best. GPs (and the GP approximations of SPs) are solved

all-at-once [13], which means that there are no constraint convergence loops to

worry about or parameters to tune. The form of the GP facilitates the addition

of variables and constraints while extending model capabilities. Please refer to

[13] for a more in-depth analysis of various MDO architectures.

A big advantage of the convexity of the GP is the low-cost computation of

constraint and variable sensitivities by leveraging Lagrange duality [6]. This

helps determine which parts of the model yield the greatest returns in terms of

fidelity to improved modeling, so engineers can target their efforts.

3. Models are amenable to mission and multi-mission design, and are compatible

with modern engineering design methodologies.

Initialize variables

Make a feasible initial guess

Evaluate design

Calculate gradients

Check optimality condition

Solution

Generate new guess

(a) Gradient-based optimization

Initialize variables

Make initial guess

Convexify Optimize convex problem

Check primal/dual condition

SolutionSensitivities

if DC

if DC &
reltol > 𝜖

(b) Convex, and difference-of-convex (DC) op-

timization

Figure 1-1: The flow diagrams of two methods of optimization.
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The design tools available in GPkit make it easy to implement mission design,

and build models that are shared between different design problems. Mission

design helps engineers gain valuable intuition about the tradeoffs in the perfor-

mance of a design, and multi-mission design allows designs to be able to satisfy

a variety of missions and mission objectives.

This thesis will methodically demonstrate the advantages of GP in modeling and

exploring complex engineering trade spaces.

18



Chapter 2

Engineering inequalities and

intuition, from equalities

This section will demonstrate how the form of the GP (monomial equalities and

posynomial inequalities) helps engineers develop intuition about the direction each

variable is pressured by a given objective function. Please refer to Appendices A.1 and

A.2 for detailed descriptions of the forms of GPs and SPs respectively. The intuition

gained in turn helps formulate constraints that can properly bound each variable

in the optimization model. GPkit, CEG’s GP modeling framework, facilitates this

process by providing feedback to designers about the boundedness of a model.

A simple aircraft optimization problem named SimPleAC1 will be derived to

demonstrate the intuitive structure of GPs and SPs, and show how we can intro-

duce new constraints to bound the feasibility sets of models.

2.1 Making feasibility sets and boundedness explicit

Consider the simple design problem below, where we define a simple bilinear monomial

equality with respect to 𝑥 and 𝑦, and constrain the sum of the variables:

1‘S’ and ‘P’ have been capitalized to designate that the model will be a ‘signomial program’, and
‘AC’ is an acronym for ‘aircraft’.
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Figure 2-1: The 𝑥-𝑦 feasibility set of a simple monomial equality.

minimize 𝑥

subject to 𝑥 + 𝑦 ≤ 2, 𝑥𝑦 =
1

2

We can draw the feasibility set of the above problem in both linear and log-space,

as shown in Figure 2-1. One expects that, given only two variables related through

an equality and bounded by an inequality, the feasibility space is a finite line segment

in log-space, and a finite exponential function in linear space. The black dot in

Figure 2-1 is the global optimum of the feasibility set (𝑥 = 1 − 1√
2
, 𝑦 = 1 + 1√

2
).

However, if we had decided to impose 𝑥𝑦 ≥ 1
2
instead of 𝑥𝑦 = 1

2
, we would get a

new feasibility set as shown in Figure 2-2. Using the GP form, we can always upper-

bound posynomials, and lower-bound both posynomials and monomials to get convex

feasible sets. Note that the optimal point, which is at 𝑥 = 1 − 1√
2
, 𝑦 = 1 + 1√

2
, does

not change when the monomial equality is relaxed. This key observation will allow

us to turn the equalities in most physical models into GP-compatible posynomial

inequalities. The posynomial equality relaxation is explained in greater detail in [6].

However if we convert the monomial equality to 𝑥𝑦 ≤ 1
2
, we will get an unbounded

model, whose feasibility set is shown in Figure 2-3. Since minimizing 𝑥 is our objective,

and both variables are only upper-bounded, they both collapse towards numerical pre-

20



Figure 2-2: The 𝑥-𝑦 feasibility set of lower-bounding monomial, and upper-bounding
posynomial.

cision zero, giving the vanishing feasibility set shown in Figure 2-3. This section will

demonstrate methods to create GP-compatible models that are adequately bounded

to avoid such singularities towards zero or infinity, which for the most part do not

exist in real physical models. The models will be created within GPkit [3].

Figure 2-3: The 𝑥-𝑦 feasibility set of upper-bounding monomial, and upper-bounding
posynomial.
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2.2 Defining the design problem

GPs are amenable to solving a large variety of design problems (see [1] for an ex-

tensive number of examples). This thesis uses aircraft design to demonstrate design

methodologies for convex optimization since the author’s background is in aerospace

engineering. Aircraft epitomize the nature of complex engineering problems. The

physical relations describing their motion are nonlinear, and all of their subsystems

are coupled through the primary forces in flight (thrust, weight, lift, drag). The goal

of the aircraft in question will be to perform a basic ‘ferry’ mission, that is to carry

a given payload over a distance while minimizing an objective function.

2.2.1 Objective functions

Objective functions are the way that a designer puts pressure on the variables in

an optimization problem. To begin with, we will consider total fuel weight 𝑊𝑓 as

our objective, which will put downward pressure on all of the variables that would

cause greater fuel burn, namely drag and weight. We must necessarily lower-bound

all variables in the objective function that have positive exponents, and upper-bound

all variables with negative exponents.

In many design problems formulated as GPs, many different objectives will put

pressure on design in the same direction. For example, an aircraft optimized for fuel

weight will look different compared to one that has been designed for total weight or

payload-fuel consumption2, but each of these objectives will put a downward pressure

on drag and weight. As such, this model will be able to take in a number of objective

functions and be properly constrained and bounded. According to Raymer, an im-

portant principle of aircraft design is ‘that there is no such thing as a free lunch!’ [16,

pg.26]. An improvement in one objective function will result in reduced performance

with respect to others.

2Payload-fuel consumption is the ratio of fuel weight to payload weight, a useful efficiency pa-
rameter.
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2.2.2 Functional description: constraining the problem

The typical process for designing anything usually involves doing either a component

decomposition or a functional decomposition of the problem. In this case, we will

think about the functional decomposition to create a basic list of constraints that our

aircraft will need to satisfy to be able to capture the tradeoffs in an aircraft design

problem. (In Section 3.1.3, we will examine how the component decomposition can

help structure larger problems.)

What does an aircraft need to be able to do to deliver payload over a distance?

� It will need to sustain steady level flight, keeping itself and the payload aloft

(Section 2.3.1).

� It will need to overcome drag (Section 2.3.3).

� It will need to contain enough fuel to complete its mission (Section 2.4.1).

� It will need to sustain its structural loads (Section 2.4.3).

Note that these are in no way presented in order of importance, which is reflective

of the non-hierarchical nature of GPs. In the basic example, we will choose not to

model engines, and leave this as an exercise to complete in Section 3.1 to improve the

model.

2.3 GP modeling from physics

Optimization model creation often starts haphazardly, with the designer having a

vague idea about the set of physics that govern a problem, and some basic assumptions

about the configuration. In this section, we will generate variables and constraints

with abandon, and think about how to make sure each variable is adequately bounded

later. Each subsection is intended to introduce the reader to an important aspect of

GP modeling, accompanied by examples in implementation.
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2.3.1 Free and fixed variables: weight and lift model

For this particular design problem, we start by modeling weight and lift, since one

of the fundamental functions of the aircraft is to stay aloft. The aircraft has weight,

which consists of the payload, wing, and fuel weights.

𝑊 ≥ 𝑊𝑝 + 𝑊𝑤 + 𝑊𝑓 (2.1)

Note that we have already had to make determination about the relation between

the two sides of the equation. Heavier aircraft burn more fuel, so we are justified to

put total weight as greater than the sum of the component weights since 𝑊 will be

pressured downward by the objective. Furthermore, we can always add more weight

to the aircraft by adding ballast to it, even if this would likely worsen the objective.

So we allow for slackness in this constraint, even if we know intuitively that it will

almost always be tight as explained in Section 2.2.1.

The aircraft has to sustain steady level flight, so it needs to generate enough lift.

We use the naive lift is greater than weight (𝐿 ≥ 𝑊 ) model below for steady level

flight:

1

2
𝜌𝑉 2𝑆𝐶𝐿 ≥ 𝑊𝑝 + 𝑊𝑤 + 0.5𝑊𝑓 (2.2)

where the lift of the aircraft is equal to weight of the aircraft with half-fuel, which

is a crude estimate of the average weight of the aircraft throughout the flight. Again,

the GP form is seamless here, since lift is related to induced drag, and so it is pressured

downward into the posynomial on the right hand side (RHS) of the equation.

We would also like the fully-fueled aircraft to be able to fly at a minimum speed

of 𝑉𝑚𝑖𝑛 without stalling, so we add the following constraint:

𝑊 ≤ 1

2
𝜌𝑉 2

𝑚𝑖𝑛𝑆𝐶𝐿𝑚𝑎𝑥 (2.3)

Note that, although we could use a monomial equality here, we don’t, because

this relation does not need to be tight. It is acceptable that the aircraft is able to fly
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Variable Value Units Description

𝜌 1.23 kg
m3 density of air

𝐶𝐿 . . . − wing lift coefficient
𝐶𝐿,𝑚𝑎𝑥 1.6 − lift coefficient at stall
𝑆 . . . m2 total wing area
𝑉 . . . m

s
cruising speed

𝑉𝑚𝑖𝑛 25 m
s

takeoff speed
𝑊 . . . N total aircraft weight
𝑊𝑓 . . . N fuel weight
𝑊𝑤 . . . N wing weight
𝑊𝑝 6250 N payload weight

Table 2.1: Variables introduced in the weight and lift model.

at a velocity slower than 𝑉𝑚𝑖𝑛 for a given objective function.

At this point, we have introduced a large set of variables, some of which are input

parameters, and the others free variables. The decision of whether to keep variables

free or fixed can shape the model development process in all forms of optimization.

The decision can be influenced by many factors in a GP, with four in particular that

stand out in this model. We set the lift coefficient and takeoff speed to be constants

since (I) we would need more detailed modeling to determine their values. Payload

weight is set because (II) it would always be unbounded towards zero due to the

downward pressure from the objective. A designer may also fix variables (III) if

he/she knows their values with certainty (e.g. gravitational acceleration 𝑔) or (IV)

the variable is a normalizing coefficient (which we will see in Section 3.1.2). The

variables have been defined in Table 2.1, where the fixed variables have associated

values. The remaining variables are free variables, to be optimized once the model is

appropriately bounded.

Note that the atmospheric density 𝜌 in Table 2.1, and other atmospheric variables

in Section 2 are set to be constant. The behavior of these variables with altitude will

be modeled in more detail in Section 3.2 when we introduce an aircraft flight profile.
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Variable Value Units Description

𝐶𝐷 . . . − drag coefficient
𝐶𝐿 . . . − wing lift coefficient
𝐿/𝐷 . . . − lift-to-drag ratio
𝑅𝑎𝑛𝑔𝑒 3000 km aircraft range
𝑇𝑓𝑙𝑖𝑔ℎ𝑡 . . . hr flight time

Table 2.2: Variables introduced to define new performance metrics.

2.3.2 Alternate objectives: more performance metrics

As multi-objective designers, we may also be interested in knowing about additional

performance metrics that can serve as part of objective functions. A few that are

particularly relevant to aircraft will be introduced here.

The time of flight of the aircraft, which is a useful metric to calculate time cost,

is simply the aircraft’s range divided by its cruise velocity:

𝑇𝑓𝑙𝑖𝑔ℎ𝑡 ≥
Range

𝑉
(2.4)

The lift-to-drag ratio is also defined:

𝐿/𝐷 =
𝐶𝐿

𝐶𝐷

(2.5)

The new variables we have introduced are detailed in Table 2.2.

An important note about variables that are potential alternate objectives: these

variables must always be lower-bounded (or inverted and upper-bounded) since the

general GP is a minimization problem. However, if they are not also upper-bounded,

these variables will likely be unbounded for a given model and run off to +∞. This

means that performance-quantifying variables will need to be in a monomial form,

or must be present in a posynomial objective function as shown in Equation 2.6 for

boundedness. We shall see this coming into play in Section 3.2.3.

Objective ≥
𝑛∑︁

𝑖=1

𝑐𝑖

𝑛∏︁
𝑖=1

𝑣𝑘𝑖,𝑗 (2.6)
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2.3.3 More physics for boundedness: thrust and drag model

If we attempt to run our current model, we would find that it is unbounded in many

variables. The results are shown in Table 2.3.

Unbounded variable Units Direction

𝑆 m2 ∞

𝑇𝑓𝑙𝑖𝑔ℎ𝑡 hr ∞

𝑉 m
s

∞

𝑊𝑓 N 0

𝑊𝑤 N 0

Table 2.3: Unbounded variables in the weight and lift model.

This is not surprising at all, since none of the defined constraints lower-bound

𝑊𝑓 , the objective function. Additionally, without pressure from the objective, any

variables that are not both upper- and lower- bounded will tend to blow up. This is in-

dicative usually that more modeling or direct substitutions are required to sufficiently

bound the variables.

In this case, we lack a propulsion model which would properly bound fuel weight,

velocity, and time of flight. For initial modeling purposes, we assume a naive con-

stant brake specific fuel consumption (BSFC) for the ‘engine’ of the aircraft, which is

assumed to provide as much thrust as needed. Since 𝑇 ≥ 𝐷:

𝑊𝑓 ≥ 𝑔 × BSFC × 𝑇𝑓𝑙𝑖𝑔ℎ𝑡 ×𝐷𝑉 (2.7)

the fuel weight required is the product of gravitational acceleration, BSFC, time of

flight, and the total drag power on the aircraft. The drag is the product of dynamic

pressure (1
2
𝜌𝑉 2), planform area 𝑆, and the coefficient of drag of the aircraft:

𝐷 ≥ 1

2
𝜌𝑉 2𝑆𝐶𝐷 (2.8)
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There are yet more relaxed monomial equalities in Equations 2.7 and 2.8. If the

pressure on the left hand side (LHS) or RHS of a monomial equality are clear as in

these cases, it is a good practice to relax the equality to leave as many degrees of

freedom in the design space as possible. The intuition is that we can almost always

spend more fuel or have more drag, but we are confident that the constraints will be

tight since our objective will suffer as a consequence.

The drag coefficient of the aircraft is assumed to be the sum of the fuselage drag,

the wing profile drag, and the wing induced drag coefficients [7]:

𝐶𝐷 ≥ 𝐶𝐷𝑓𝑢𝑠𝑒
+ 𝐶𝐷𝑤𝑝𝑎𝑟 + 𝐶𝐷𝑖𝑛𝑑

(2.9)

The individual components of the drag are represented as monomial equalities,

borrowing constraints 2.10 through 2.15 from [7]. The fuselage drag is a function of

its drag area 𝐶𝐷𝐴0 and the planform area of the wing:

𝐶𝐷𝑓𝑢𝑠𝑒
=

𝐶𝐷𝐴0

𝑆
(2.10)

where the 𝐶𝐷𝐴0 is linearly proportional to the volume of fuel in the fuselage:

𝑉𝑓𝑓𝑢𝑠𝑒 = 𝐶𝐷𝐴0 × 10 m (2.11)

Note that we correct the dimensionality of the volume here, since GPkit automat-

ically checks units.

The wing profile drag is the product of the form factor, the friction drag coefficient,

and the wetted area ratio of the wing [7],

𝐶𝐷𝑤𝑝𝑎𝑟 = 𝑘𝐶𝑓𝑆𝑤𝑒𝑡𝑟𝑎𝑡𝑖𝑜 (2.12)

The Reynolds number of the aircraft wing is approximated

𝑅𝑒 ≤ 𝜌

𝜇
𝑉

√︂
𝑆

𝐴𝑅
(2.13)

and used to find the friction drag coefficient of wing. We approximate the 𝐶𝑓 by
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Variable Value Units Description

AR . . . − aspect ratio
BSFC 400 g

kW·hr brake specific fuel consumption
𝐶𝐷𝐴0 . . . m2 fuselage drag area
𝐶𝑓 . . . − skin friction coefficient
𝐷 . . . N total drag force
𝑒 0.92 − Oswald efficiency factor
𝑘 1.17 − form factor

𝜇 1.78 × 10−5 kg
m·s viscosity of air

𝑅𝑒 . . . − Reynolds number(︁
𝑆

𝑆𝑤𝑒𝑡

)︁
2.075 − wetted area ratio

𝑉𝑓𝑓𝑢𝑠𝑒 . . . m3 fuel volume in the fuselage

Table 2.4: Variables introduced in the thrust and drag model.

Unbounded variable Units Direction

𝑉𝑓𝑓𝑢𝑠𝑒 m3 0
𝑊𝑤 N 0

Table 2.5: Unbounded variables in the GP-compatible formulation.

assuming a turbulent flat plate flow:

𝐶𝑓 ≥ 0.074

𝑅𝑒0.2
(2.14)

The induced drag of the wing is calculated with a span efficiency factor 𝑒, and is

a function of the 𝐶𝐿 and aspect ratio AR of the wing.

𝐶𝐷𝑖𝑛𝑑𝑢𝑐𝑒𝑑
=

𝐶2
𝐿

𝜋𝐴𝑅𝑒
(2.15)

The new variables are detailed in Table 2.4.

As shown in Table 2.5, attempting to run the model as is results in both the

fuselage fuel volume 𝑉𝑓𝑓𝑢𝑠𝑒 and the wing weight 𝑊𝑤 still having no lower bounds.

These variables will need to be properly bounded to complete the SimPleAC model.
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2.4 Limits of GP and convexity, and SP modeling

Even with the demonstrated strengths of GPs in solving certain classes of problems,

it is important to recognize that the mathematical framework has limits. The three

distinct types of GP-incompatibility in design problems are detailed by Hoburg [6],

which are discreteness, quasi-convexity, and multi-modality. Discreteness in the GP

can be approached by coupling discrete programming methods such as branch-and-

bound into a sequential GP. This is outside of the scope of this thesis. Quasi-convexity

and to a certain extent multimodality can be addressed through a non-log-convex ex-

tension of GPs called SPs, where certain constraints are expressed as signomial (or

difference-of-posynomial) constraints (described in greater detail in Appendix A.2).

Even the addition of a single signomial constraint turns the problem from a GP to a

SP, which means that the problems loses convexity and all of the mathematical guar-

antees associated with it. It takes engineering intuition to recognize where and when

improved modeling is worth the loss of the mathematical guarantees. Kirschen [10]

describes in greater detail how signomial constraints are often required to capture

fundamental design tradeoffs.

2.4.1 Signomial constraints: fuel volume model

In an attempt to put a lower bound 𝑉𝑓𝑓𝑢𝑠𝑒 , we will be adding a fuel volume model

to SimPleAC, where fuel can be stored in the wing or in the fuselage. The fuel

volume will be modeled first instead of the wing weight because the wing weight

will be a function of the fuel stored in the fuselage. The reason why this model is

GP-incompatible is because of the following constraint which follows logically:

𝑉𝑓𝑎𝑣𝑎𝑖𝑙 ≤ 𝑉𝑓𝑤𝑖𝑛𝑔
+ 𝑉𝑓𝑓𝑢𝑠𝑒 (2.16)

The fuel volume available must be less than the sum of the fuel volume available

in the wing and the fuselage. It turns out that volumes that ‘contain’ free variables

can create signomial constraints. (One way around this is potentially creating fuel

fraction variables to denote how much fuel is stored in each volume, but other potential
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parametrizations will not be explored here.)

As such, we can continue to develop the model, since it is important for us to

capture the fuel distribution between the wing and the fuselage. Fuel weight is going

to influence the lift required of the aircraft, so the weight of the fuel is determined

using a density parameter 𝜌𝑓 .

𝑉𝑓 =
𝑊𝑓

𝜌𝑓𝑔
(2.17)

We need a model of how much fuel volume there is in a wing. Intuitively, we

would expect the volume within a wing to be related linearly to its thickness ratio

(𝜏) and span (𝑏), and to the square of its chord (𝑐).

𝑉𝑓𝑤𝑖𝑛𝑔
∝ 𝜏𝑏𝑐2 (2.18)

It is convenient to express relation 2.18 in terms of planform area 𝑆, aspect ratio

AR and thickness ratio 𝜏 only. Using the additional relations 𝐴𝑅 = 𝑏2

𝑆
and 𝑆 ∝ 𝑏𝑐,

we can express 𝑉𝑓𝑤𝑖𝑛𝑔
.

𝑉𝑓𝑤𝑖𝑛𝑔
∝ 𝜏

(︂
𝐴𝑅

𝑆

)︂0.5(︂
𝑆

𝑏

)︂2

∝
(︂
𝐴𝑅

𝑆

)︂0.5
𝑆2

𝑆𝐴𝑅
∝

√
𝑆𝜏√
𝐴𝑅

(2.19)

𝑉 2
𝑓𝑤𝑖𝑛𝑔

≤ 9 × 10−4 m4 × 𝑆𝜏 2

𝐴𝑅
(2.20)

Such variable transformations can be useful to have a minimal parametrization

of designs. One can solve the minimal optimization problem, and post-process the

solution of the problem to get a complete geometry as necessary. The new variables

introduced to bound fuel volume are in Table 2.6. (In Equation 2.20, the constant

9×10−4 m4 was picked as the coefficient in front of the relation by tuning it after the

model was developed, but any other coefficient would work.)
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Variable Value Units Description

𝜌𝑓 817 kg
m3 density of fuel

𝑔 9.81 m
s2

gravitational acceleration
𝜏 0.12 − airfoil thickness to chord ratio
𝑉𝑓 . . . m3 fuel volume
𝑉𝑓𝑎𝑣𝑎𝑖𝑙 . . . m3 fuel volume available
𝑉𝑓𝑤𝑖𝑛𝑔

. . . m3 fuel volume in the wing

Table 2.6: Variables introduced in the fuel model.

2.4.2 Arguments for the signomial equality

This segue will explain and motivate the use of signomial equalities, as described

in [15], in SP modeling. Signomial equalities must be used as a last resort. The

signomial equality is the only place where the feasibility set of individual GPs within

a SP solve are not guaranteed to be subsets of the feasibility set of the SP. This

is because the signomial solution algorithm in GPkit flattens the original signomial

equality constraint, a concave curve in log-space in 𝑛-dimensions, onto a line in log-

space in 𝑛-dimensions(Method C in [15]) that intersects the original constraint at the

optimal point of the last GP solve. This is undesirable, although the final solution

of the SP with equalities is guaranteed to be in the feasibility region of the SP.

Furthermore, SPs with signomial equalities have been demonstrated to require more

GP solves than SPs without signomial equalities. However, there are a few arguments

to be made in defense of signomial equalities.

One good use case of the signomial equality is in constraints in which the direction

of pressure on free variables is not clear. This ensures the tightness of constraints

that may otherwise have unbounded variables. A good example is in atmospheric

models. Although the pressure on air viscosity 𝜇 is almost certainly downward since

it results in lower drag, the pressure on air density 𝜌 is not clear because of the

tradeoffs between aircraft endurance and range.

The second reason is that we are not interested in the ‘feasibility set’ of the at-

mosphere, since this has no intuition behind it: at every altitude, the atmospheric

quantities can only be be represented by single quantities. Additionally, the com-
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putational penalty of implementing signomial equalities in atmospheric models is

low, since the monomial approximation to the atmospheric data is not far from the

monomial approximations made to the signomial equality. In fact, when we add an

atmospheric model to SimPleAC in Section 3.2, we will be implementing signomial

equalities to represent both air density 𝜌 and viscosity 𝜇.

2.4.3 Completing the model: wing structural model

Only one unbounded variable remains, which is wing weight 𝑊𝑤. We can think of

wing weight as having two components, the skin weight that only grows as a function

of wing area and the structural weight which is a function of both the geometry and

loading. The surface weight expression is straightforward.

𝑊𝑤𝑠𝑢𝑟𝑓
≥ 𝑊𝑤𝑐𝑜𝑒𝑓𝑓2

𝑆 (2.21)

We would like wing structural weight to account for the loading distribution and

the geometry of the wing. The wing will have to sustain a maximum bending load

(we will neglect shear, since the two are coupled) due to maximum takeoff weight,

multiplied by an ultimate structural factor 𝑁𝑢𝑙𝑡 for maneuvering. I have borrowed the

wing weight model from [7], and adapted it through a structural weight coefficient

𝑊𝑤𝑐𝑜𝑒𝑓𝑓1
. Note that this equation captures the major trends in wing structural sizing.

We can see this through looking at the partial derivatives of the wing weight with

respect to the different free variables. The weight grows with the cube of the span

(𝐴𝑅1.5 = 𝑏3

𝑆1.5
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

, derived from the integration of a quadratically increasing bending

moment), linearly with the maximum structural factor 𝑁𝑢𝑙𝑡, and inversely with the

surface area3. Using similar partial-derivative based analyses, it is often easy to make

first-order models for components.

𝑊𝑤𝑠𝑡𝑟𝑐 ≥
𝑊𝑤𝑐𝑜𝑒𝑓𝑓1

𝜏
𝑁𝑢𝑙𝑡𝐴𝑅

1.5
√︁

(𝑊0 + 𝜌𝑓𝑔𝑉𝑓𝑓𝑢𝑠𝑒)𝑊𝑆 (2.22)

3This can be difficult to see, but since 𝑆 ∝ 𝑏𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑐 and loading is constant, as area grows, the
thickness of the wing grows as well at a constant 𝜏 . So the weight increases linearly with S, and
stiffness increases with the cube of S. Integrated over the whole wing this yields a 𝑆−1 relation.

33



Variable Value Units Description

𝑁𝑢𝑙𝑡 3.3 − ultimate load factor
𝑊𝑤𝑐𝑜𝑒𝑓𝑓1

2 × 10−5 1
m

wing weight coefficient 1
𝑊𝑤𝑐𝑜𝑒𝑓𝑓2

60 Pa wing weight coefficient 2
𝑊𝑤𝑠𝑡𝑟𝑐 . . . N wing structural weight
𝑊𝑤𝑠𝑢𝑟𝑓

. . . N wing skin weight

Table 2.7: Variables introduced in the wing structural model.

Equation 2.22 takes into account the root bending moment relief due to presence

of fuel and weight in the wings by performing a geometric average of the total weight,

and the weight excluding wing fuel and wing weight.

The total wing weight is now lower-bounded by its component weights, and we

have introduced the final set of variables in Table 2.7.

𝑊𝑤 ≥ 𝑊𝑤𝑠𝑢𝑟𝑓
+ 𝑊𝑤𝑠𝑡𝑟𝑐 (2.23)

2.5 Results of SimPleAC

The benefits of convex optimization and GP in both solution quality (in terms of

mathematical guarantees) and the low-cost computation of sensitivities have been

detailed in ([7],[11]), so these benefits will not be featured here. However, the values

of the free variables, and the sensitivities of the fixed parameters are presented for

the reader.

Table 2.8: Values of free variables in the SimPleAC model.

Free Variables Value Units

(𝐶𝐷𝐴0) 0.004751 m2

𝐴 23.41

𝐶𝐷 0.01928

𝐶𝐿 0.7867

𝐶𝑓 0.004054

𝐶𝐷𝑓𝑢𝑠𝑒
2.902× 10−4
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𝐶𝐷𝑖𝑛𝑑
0.009149

𝐶𝐷𝑤𝑝𝑎𝑟 0.009843

𝐷 237.2 N

𝐿/𝐷 40.8

𝑅𝑒 2.026× 106

𝑆 16.37 m2

𝑇𝑓𝑙𝑖𝑔ℎ𝑡 23.84 hr

𝑉 34.96 m
s

𝑉𝑓 0.09678 m3

𝑉𝑓𝑎𝑣𝑎𝑖𝑙
0.09678 m3

𝑉𝑓𝑓𝑢𝑠𝑒
0.04751 m3

𝑉𝑓𝑤𝑖𝑛𝑔
0.04928 m3

𝑊 1.007× 104 N

𝑊𝑓 775.7 N

𝑊𝑤 3041 N

𝑊𝑤𝑠𝑡𝑟𝑐
2059 N

𝑊𝑤𝑠𝑢𝑟𝑓
982.1 N

Table 2.10: Sensitivities of parameters in the SimPleAC model.

Sensitivities Value

BSFC +1.1

𝑅𝑎𝑛𝑔𝑒 +1.1

𝑊𝑝 +1.1

𝑔 +1.1(︁
𝑆

𝑆𝑤𝑒𝑡

)︁
+0.57

𝑘 +0.57

𝑒 -0.53

𝑉𝑚𝑖𝑛 -0.49

𝜏 -0.34

𝑁𝑢𝑙𝑡 +0.31

𝑊𝑤𝑐𝑜𝑒𝑓𝑓1
+0.31

𝜌 -0.3

𝐶𝐿,𝑚𝑎𝑥 -0.24
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𝑊𝑤𝑐𝑜𝑒𝑓𝑓2
+0.15

𝜇 +0.11

𝜌𝑓 -0.044
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Chapter 3

Extensibility of GP

Recalling from Figure 1-1, traditional gradient-based design optimization tools im-

plement convergence loops that assume structure within a given design problem. The

‘bag of constraints’ form of the GP means that constraints can be added to the

problem without having to restructure the optimization formulation. This property,

coupled with the object-oriented modeling framework of GPkit, allows GP compatible

models to be continuously extensible. This section will demonstrate common meth-

ods used to extend the capability and improve the fidelity of GP- and SP-compatible

models.

3.1 Modularization and improved fidelity: engine model

The aircraft currently has an engine that weighs nothing and magically supplies un-

limited power. This is obviously unphysical, and requires refinement.

3.1.1 Creating an engine submodel

Before even thinking about modeling, we would like to leverage the object-oriented

GPkit models to put the variables describing the engine into a submodel (currently

only consisting of the BSFC variable). In the GPkit software, we do this by creating

a new class (an object in the Python language) called Engine and creating a setup
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method that returns the constraints within it. The Model and Variable objects in

the sample code are imported from GPkit.

class Engine(Model):

def setup(self):

# Dimensional constants

BSFC = Variable("BSFC", 400, "g/(kw*hr)",

"brake specific fuel consumption")

constraints = []

return constraints

We allow the SimPleAC model to contain the variables and constraints of the

engine as follows:

class SimPleAC(Model):

def setup(self):

self.engine = Engine()

self.components = [self.engine]

...

return constraints , self.components

This restructuring of the model yields the exact same GP formulation as the

unstructured problem, but gives us the flexibility to develop submodels collaboratively

and in a disciplined manner.

If we think of an engine as an input-output system, we can determine how it

would interact with the SimPleAC system, and create appropriately bounded sets of

variables. At the most basic level, an engine provides shaft power, consumes fuel,

and has weight. The model is missing both the shaft power and weight description of

the engine. If we abstract away the propeller (the relation between shaft power and

thrust power) through a propeller efficiency, we can perhaps relate maximum power

to weight.

38



3.1.2 Data-based modeling: engine power vs. weight

We can imagine that, for a specific kind of engine, there is a relation between the

maximum shaft power available and the mass of the engine, somewhat related to the

cube-square law, which describes the relation between the surface area and volume

of objects. And let’s assume that our knowledge of the internal workings of engines

is limited, but we have some knowledge of the technology available in the market

and have data to support it. Using GPfit [8], we will try to fit the data to find GP

compatible relations between engine weight and maximum power. This section will

try to highlight the best practices when making data-based models.

To be able to fit the engine power versus weight data, we take several important

steps.

� Comb the data. Since we are essentially projecting data with potentially high

standard deviation onto a single line, it is important to fit the ranges of data

we care about.

� Normalize the data. Normalizing the data by some known quantity is prefer-

able, since fits should not be dependent on the units that are used while perform-

ing it. This also helps the fit integrate seamlessly into GPkit, since dimensional

fits would require units manipulation to avoid errors. The data can be normal-

ized by reference quantities (in this case using the maximum power and weight

values from the data set).

� Choose the type of fit. In [8], softmax-affine (SMA) and implicit softmax-

affine (ISMA) functions are proposed and implemented as convex approxima-

tions to data. Depending on the behavior of the data, one or the other may be

appropriate. For engineering relations that are expected to be smooth, SMA

functions are often good approximations. However, if kinks are expected in the

functions, ISMA functions can locally adjust the softness of the fit to reduce

the error of the fit.

� Choose the number of posynomial terms in the fit. The number of

39



posynomial terms can be changed to better capture the trends in the data.

RMS error can be reduced by including more posynomial terms, but only if the

variable of interest has downward pressure on it from the objective function

(since it is on the greater side of the inequality). Otherwise fits are limited to

monomial equalities in 𝑛-dimensions.

After having performed these intermediate steps on the engine data, the relation

we obtain for the one-term (monomial) approximation is as follows:

(︂
𝑊𝑒𝑛𝑔

𝑊𝑒𝑛𝑔,𝑚𝑎𝑥

)︂0.100

= 0.988

(︂
𝑃𝑠ℎ𝑎𝑓𝑡

𝑃𝑠ℎ𝑎𝑓𝑡,𝑚𝑎𝑥

)︂0.117

(3.1)

This fit, shown by the dashed line in Figure 3-1, has a root mean square error of

0.414, which has to do both with the quality of the fit and the level of variation in

the data. Since engine weight will have downward pressure on it from the objective

function, we can easily use a two-term posynomial approximation to improve its error.

Figure 3-1: Engine MSL power versus weight fits for 𝐾 = 1, 2 posynomial terms with
underlying data.

(︂
𝑊𝑒𝑛𝑔

𝑊𝑒𝑛𝑔,𝑚𝑎𝑥

)︂1.92

≥ 4.41 × 10−3

(︂
𝑃𝑠ℎ𝑎𝑓𝑡

𝑃𝑠ℎ𝑎𝑓𝑡,𝑚𝑎𝑥

)︂0.759

+ 1.44

(︂
𝑃𝑠ℎ𝑎𝑓𝑡

𝑃𝑠ℎ𝑎𝑓𝑡,𝑚𝑎𝑥

)︂2.90

(3.2)
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This relation has an RMS error of 0.346, which is a significant improvement. Both

fits are shown with the data in Figure 3-1 for comparison.

With a SMA approximation, adding more than two terms to the fit do not improve

its RMS error on the given data, due to the large standard deviation of the data used.

As such, we will proceed with the 2-term posynomial fit.

Other constraints in engine model

The cruise shaft power is constrained to be 20% of the maximum shaft power of the

engine, to account for engine surge power demands and add engineering realism. This

rather arbitrary constraint is removed later when the full mission model is integrated.

𝑃𝑠ℎ𝑎𝑓𝑡 ≤
1

5
𝑃𝑠ℎ𝑎𝑓𝑡,𝑚𝑎𝑥 (3.3)

3.1.3 Converting all subsystems into submodels

Within this framework, we can modularize the SimPleAC into wing and fuselage

modules as well, with very little additional work. This creates the variable and

constraint hierarchy as presented in Figure 3-2, which define all of the constraints

required for SimPleAC to fly one flight segment.

Aircraft

Wing Fuselage Engine

Figure 3-2: Variable and constraint hierarchy of the SimPleAC model for a single
flight segment.

Uni-directional graph structures such as in Figure 3-2 are informative, since they

provide an intuitive representation of the way constraints and variables are passed

between GPkit models. In this basic framework, variables and constraints from one

model can only be called by models that are higher and connected in the diagram.

This reconciles the fact that object creation in software engineering is serial, whereas

the components of the system being optimized are interconnected. The way the SP
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is solved at the end has no hierarchy, but as we will see in Section 3.2 a hierarchi-

cal representation will facilitate the vectorization of constraints required for mission

design.

3.2 Mission design and performance modeling form

The SimPleAC defined so far works well to demonstrate the capabilities of SPs in

helping explore tradeoffs in engineering design. However, often in the design process,

we will want to test the performance of a design in different conditions, and/or during

different phases of a mission. This requires the vectorization of constraints that relate

to the performance of the design. What we’d like to do is to have a single aircraft

optimize both its static sizing variables (having to do with the airframe), and its flight

performance simultaneously. This requires a major augmentation of the model graph

defined in Figure 3-2, into a uni-directional graph as shown in Figure 3-3.

Mission

Aircraft

Perf.

Wing

Perf.

Atmosphere

Engine

Perf. Aircraft

Wing Fuselage Engine

Aircraft

Perf.

Wing

Perf.

Atmosphere

Engine

Perf.

Segment 2Segment 1

Figure 3-3: Variable and constraint hierarchy of the SimPleAC static+performance
model for two flight segments. Models that include sizing variables are bolded while
models that include performance variables are italicized. There are models that con-
tain both kinds of variables.

Figure 3-3 represents a model with two flight segments, where the models enclosed

in rectangles contain the set of constraints that are vectorized by the number of flight

segments, 𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 2. Each one of the performance models contains variables that

change between flight segments. Note that the fuselage is the only subcomponent not

to have a performance model. This is because the drag coefficient of the fuselage is
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assumed to be constant between flight segments, making it static. A Mission model

that links flight segments together has been added, as well as an Atmosphere model,

which describes the conditions in which the aircraft operates.

The static aircraft model and the atmospheric state are passed as arguments to

multiple performance models within this framework. To transform our previously

static model to the performance-static model hierarchy we have identified, we have to

determine which variables belong in which node of the graph. Table 3.1 details the

full decomposition of the model into its submodels in the format defined by Figure 3-

3. This is as simple as identifying which variables we do not expect to change during

flight segments, and which ones we do. Note that some of the variables from the

previous sections have been renamed (e.g. 𝑇𝑓𝑙𝑖𝑔ℎ𝑡 → 𝑡𝑚 and 𝑊𝑓 → 𝑊𝑓𝑚) to clarify

their purpose within this framework.

Table 3.1: Variables of SimPleAC in static+performance modeling, detailed in the
variable and constraint hierarchy.

Variable Units Description

Mission

𝐶 1
hr hourly cost index

𝑊𝑓𝑚 N total mission fuel

𝑡𝑚 hr total mission time

𝑅𝑎𝑛𝑔𝑒 km aircraft range

𝑊𝑝 N payload weight

𝑡𝑠 hr segment time

𝑅𝑠 km segment range

𝑊𝑓𝑠 N segment fuel burn

𝑊𝑠𝑡𝑎𝑟𝑡 N segment beginning weight

𝑊𝑎𝑣𝑔 N segment average weight

𝑊𝑒𝑛𝑑 N segment end weight

𝑑ℎ
𝑑𝑡

m
hr climb rate

ℎ m flight altitude

𝑉𝑚𝑖𝑛
m
s takeoff speed

Mission/Atmosphere

𝜇 kg
(m·s) dynamic viscosity
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𝜇𝑀𝑆𝐿
kg

(m·s) dynamic viscosity at MSL

𝜌 kg
m3 density of air

𝜌𝑀𝑆𝐿
kg
m3 density of air at MSL

ℎ m altitude

ℎ𝑡𝑜𝑝 m highest altitude valid

Mission/SimPleAC

𝑉𝑓 m3 maximum fuel volume

𝑉𝑓𝑎𝑣𝑎𝑖𝑙
m3 fuel volume available

𝑊 N maximum takeoff weight

𝑊𝑓 N maximum fuel weight

𝑔 m
s2 gravitational acceleration

𝜌𝑓
kg
m3 density of fuel

Mission/SimPleAC/Engine

𝑃𝑠ℎ𝑎𝑓𝑡,𝑚𝑎𝑥 kW MSL maximum shaft power

𝑃𝑠ℎ𝑎𝑓𝑡,𝑟𝑒𝑓 kW reference MSL maximum shaft power

𝑊𝑒 N engine weight

𝑊𝑒,𝑟𝑒𝑓 N reference engine weight

𝜂𝑝𝑟𝑜𝑝 propeller efficiency

Mission/SimPleAC/Fuselage

(𝐶𝐷𝐴0) m2 fuselage drag area

𝐶𝐷𝑓𝑢𝑠𝑒
fuselage drag coefficient

𝑉𝑓𝑓𝑢𝑠𝑒
m3 fuel volume in the fuselage

Mission/SimPleAC/Wing

𝐴 aspect ratio

𝑆 m2 total wing area(︁
𝑆

𝑆𝑤𝑒𝑡

)︁
wetted area ratio

𝑉𝑓𝑤𝑖𝑛𝑔
m3 fuel volume in the wing

𝑊𝑤 N wing weight

𝑊𝑤𝑠𝑡𝑟𝑐 N wing structural weight

𝑊𝑤𝑠𝑢𝑟𝑓
N wing skin weight

𝑁𝑢𝑙𝑡 ultimate load factor

𝑊𝑤𝑐𝑜𝑒𝑓𝑓1

1
m wing weight coefficient 1

𝑊𝑤𝑐𝑜𝑒𝑓𝑓2
Pa wing weight coefficient 2

𝐶𝐿,𝑚𝑎𝑥 lift coefficient at stall

𝑘 form factor

𝑒 Oswald efficiency factor
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𝜏 airfoil thickness to chord ratio

Mission/SimPleACP

𝐶𝐷 drag coefficient

𝐷 N total drag force

𝐿/𝐷 lift-to-drag ratio

𝑅𝑒 Reynolds number

𝑉 m
s cruising speed

Mission/SimPleACP/EngineP

BSFC g
(hr·kW) brake specific fuel consumption

𝑃𝑠ℎ𝑎𝑓𝑡 kW shaft power

𝑇 N propeller thrust

Mission/SimPleACP/WingP

𝐶𝐿 wing lift coefficient

𝐶𝑓 skin friction coefficient

𝐶𝐷𝑖𝑛𝑑
wing induced drag

𝐶𝐷𝑤𝑝𝑎𝑟 wing profile drag

Then, using the variable structure in Table 3.1, we can place the constraints in the

appropriate locations. Each constraint should be placed in the model that contains

the variable in the constraint that is highest in the level of hierarchy. For example,

we can consider the constraint for thrust power in Equation 3.4.

𝑇 × 𝑉 ≤ 𝜂𝑝𝑟𝑜𝑝𝑃𝑠ℎ𝑎𝑓𝑡 (3.4)

We expect that thrust (𝑇 ) and shaft power (𝑃𝑠ℎ𝑎𝑓𝑡) variables exist in Engine Per-

formance. Since our model has no model for propeller efficiency (𝜂𝑝𝑟𝑜𝑝), we treat it

as a static parameter in Engine. Velocity (𝑉 ) is a variable in Aircraft Perfor-

mance . As a result, the constraint for thrust power would logically reside in the

Aircraft Performance model, the highest level in the hierarchy as shown in Fig-

ure 3-4. Since this model is vectorized, the constraint would be vectorized by the

number of flight segments we create.

Now we have used a framework to modularize our constraints, which makes it
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Mission

Aircraft

Perf.

Wing

Perf.

Atmosphere

Engine

Perf. Aircraft

Wing Fuselage Engine

Segment

Figure 3-4: Variable hierarchy of thrust constraint 3.4. The models that contain
the variables in the constraint are enclosed in circles. Constraint logically resides
in Aircraft Perf.. The vectorization of flight segment performance models in the
rectangle has been neglected for clarity.

amenable to vectorization and mission design.

3.2.1 Linking performance models: flight segments

Although the variables in the performance models are vectorized, they can be con-

strained against each other. If each of the Aircraft Performance models were

operating independently of each other simulating different missions, then they would

simply be merged in the bag of constraints of Mission . However, we know that the

models are related since the aircraft burns fuel throughout the mission, changing its

flight characteristics.

The derivation of the SP-compatible flight segment models has been detailed

in [11], and used widely within the CEG in aircraft design. It defines segment start,

end and average weights, as well as altitude, and all of its relevant constraints are

contained in the Mission model. Please find the full set of variables belonging to

the flight segment model in Appendix B.1.

The monomial equality below has been added to the formulation
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ℎ𝑎𝑣𝑔1 =
1

2
∆ℎ1 (3.5)

ℎ𝑎𝑣𝑔𝑖 =
√︀

ℎ𝑖 × ℎ𝑖−1, 𝑖 = 2, ..., 𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 (3.6)

to define an average altitude variable ℎ𝑎𝑣𝑔 with respect to the segment altitude

change variable ∆ℎ and segment ending altitude ℎ in Section 3.2.2. This adds con-

servatism to the density and drag (otherwise, the air density for a flight segment is

calculated at the end of the segment, at which the aircraft is at its highest altitude).

The cruise altitude (final altitude in every flight segment but the initial segment) has

been constrained to be greater than 5000m.

As with most GP approximations, there are limitations to this model. To avoid

non-positive altitude change values (∆ℎ), we restrict the aircraft to climb during

every segment, and don’t model descents. Furthermore, we have binned the flight

segments to equal range segments to avoid the potential lower-unboundedness of the

lengths of certain segments.

3.2.2 Characterizing the environment: atmospheric model

We have created a mission and flight segment framework without having a model of

the environment in which the aircraft operates. So far, we have assumed that the

aircraft flies at a constant altitude (sea level) for a single mission segment, and is

subject to the same air density and viscosity. An atmospheric model is essential to

capturing the tradeoffs between flight altitude, engine performance, and lift and drag

characteristics. This simplification is overcome through vectorization.

Tao’s atmosphere fits [17] have been borrowed for this purpose. These are 2-term

softmax-affine fits of the atmospheric quantities of interest (𝜌 and 𝜇 in this thesis)

with respect to altitude. The constraints are guaranteed to be tight through signomial

equalities, as explained in Section 2.4.2. The relations are valid between 0-10000m of

altitude.

Similar environmental models can be made for other design problems where the
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environmental variables are inextricably coupled to performance. Another good ex-

ample of environmental modeling in GP is performed by Burton [4], where wind

speeds are integrated into a loitering aircraft optimization problem.

3.2.3 Mission objectives

Recalling from Section 2.3.2, upper-unbounded performance metrics often have to

reside in the objective function to be bounded. We combine mission fuel 𝑊𝑓𝑚 and

mission time 𝑡𝑚 into a composite objective function through a cost index 𝐶 for bound-

edness,

Objective ≥ 𝑊𝑓
1

N
+ C × 𝑡𝑚 (3.7)

and divide 𝑊𝑓𝑚 by newtons to achieve uniform units (non-dimensional). Another

method to achieve proper boundedness is to add an arbitrary large upper bound.

However this will result in the bounding constraint being tight and giving unphysical

results, and so this thesis will implement the objective in Equation 3.7 instead. Cost

index C is defined as a separate parameter so that we can observe the sensitivity of

the variable post-optimization.

3.3 Design exploration through mission design

There are a few interesting methods that we can use to explore potential designs

using GPs. So instead of showing the optimum of the SimPleAC for a single mission,

leveraging the speed of convex optimization, we can map out the entire design space

with respect to mission parameters. Please refer to [9] for details on the computational

advantages of the GP and SP compared to other non-linear optimization methods.

In this case, the SimPleAC has been optimized (for 𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 4) over a range of

payload weight (1000-10000 N) and range (1000-5000km), and the mission fuel weight

and total weight have been plotted in contour plots in Figure 3-5. Note that every

point in the design space represents a fully optimized aircraft. The full list of inputs
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Constants Value Units Description

𝑅𝑎𝑛𝑔𝑒 [1000-10000] km aircraft range
𝑊𝑝 [1000-5000] N payload weight
𝐶 120 1

hr
hourly cost index

𝑇/𝑂𝑓𝑎𝑐𝑡𝑜𝑟 2 takeoff thrust factor
𝑉𝑚𝑖𝑛 25 m

s
takeoff speed

ℎ𝑐𝑟𝑢𝑖𝑠𝑒 5000 m minimum cruise altitude

Table 3.3: Inputs to the design space exploration of the Mission model.

Figure 3-5: The fuel and total weight contours with respect to range and payload.

to the Mission model are detailed in Table 3.3

In Section 2.4.1 we had to weigh whether or not it was worth losing the math-

ematical guarantees of convexity to be able to model fuel storage. Now we can use

our SP model to understand the tradeoffs in fuel storage, and when it is beneficial to

store fuel in the wing versus the fuselage.

Figure 3-6 shows how designs for different range and payload requirements allocate

fuel differently within the aircraft. As the mission range increases for a given payload

weight (upward movement on the graph), more and more fuel is allocated within the

fuselage as a proportion of total fuel. Since fuselage fuel volume is directly related

to increased fuselage drag, it is logical that no fuel is put in the fuselage until the

fuel volume constraint in the wing becomes tight. And this is the behavior that is

observed, since no fuel is allocated in the fuselage towards the lower right of the graph.

For composite objective functions, it can be difficult to have intuitions about how

sensitivities to parameters can affect the design, since the parameters act on multiple
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Figure 3-6: Fraction of total fuel stored in fuselage with respect to range and payload.

Figure 3-7: Time cost and time cost index sensitivity contours. We can gain intu-
ition about the relative importance of different components of composite objective
functions by showing both the costs and their sensitivities together.

variables of interest. A way to attempt to decouple these is to plot both the cost of

a variable in the objective and its relevant sensitivity next to each other, as shown

in Figure 3-7. Taking a look at point [4000N,3500km], we can follow the time cost

(2 × 103) contour to see all of the missions with the same time cost as this mission

(same average flight speed), and see how the fraction of time cost versus total cost

varies through the sensitivity to the time cost index. This can help a designer gain

intuition about the relative importance of different components of cost.
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Variable/Model Sensitivity Variable description

Mission

𝑅𝑎𝑛𝑔𝑒 +1.1 aircraft range
𝑉𝑚𝑖𝑛 -0.67 takeoff speed
𝐶 +0.46 hourly cost index
𝑊𝑝 +0.45 payload weight
ℎ𝑐𝑟𝑢𝑖𝑠𝑒 +0.12 minimum cruise altitude

Mission/SimPleAC
𝑔 +0.54 gravitational acceleration
𝜌𝑓 -0.042 density of fuel

Mission/SimPleAC/Engine
𝜂𝑝𝑟𝑜𝑝 -0.65 propeller efficiency
𝑃𝑠ℎ𝑎𝑓𝑡,𝑟𝑒𝑓 -0.067 reference MSL maximum shaft power
𝑊𝑒,𝑟𝑒𝑓 +0.044 reference engine weight

Mission/SimPleAC/Wing

( 𝑆
𝑆𝑤𝑒𝑡

) +0.45 wetted area ratio

𝑘 +0.45 form factor
𝐶𝐿,𝑚𝑎𝑥 -0.33 lift coefficient at stall
𝑒 -0.17 Oswald efficiency factor
𝑊𝑤𝑐𝑜𝑒𝑓𝑓2

+0.12 wing weight coefficient 2
𝜏 -0.11 airfoil thickness to chord ratio
𝑁𝑢𝑙𝑡 +0.07 ultimate load factor
𝑊𝑤𝑐𝑜𝑒𝑓𝑓1

+0.07 wing weight coefficient 1

Mission/SimPleACP/EngineP
𝐵𝑆𝐹𝐶 [ +0.16 +0.14 +0.14 +0.14 ] brake specific fuel consumption

Table 3.4: A selection of sensitivities to design parameters.

3.4 More modeling improvements before multimis-

sion design

There are still significant weaknesses in the model relating to the engine of the model

that require improvement before we can perform multimission design in Section 3.5.

We can see this by observing the sensitivities in Table 3.4.

As we can see, variables internal to the engine model, such as BSFC and 𝜂𝑝𝑟𝑜𝑝

have large sensitivities (0.59 [cumulative] and -0.65 respectively). The objective of

the model is as sensitive to these variables as mission input variables such as range

and payload, so these variables require refinement.

The following sections will take a two-pronged approach to improved engine mod-
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eling. The first weakness of the current model is the fact that the engine can supply

the same amount of power regardless of altitude. The maximum power of natu-

rally aspirated piston engines drops with altitude; adding a lapse rate will improve

how much we trust the engine model. The second weakness is the lack of an engine

BSFC model. Empirical data shows that the BSFC of an engine deteriorates at low

power outputs. In Sections 3.4.1 and 3.4.2, more data-based modeling will be used

to capture BSFC behavior at all throttle ranges.

3.4.1 Environmental effects: engine lapse rate model

Data-based modeling techniques have been detailed in Section 3.1.2. In the same way

posynomial fits were created for the relationship between engine maximum power

and weight, the lapse rate of the engine was fitted with respect to throttle level. This

model requires the insertion of another signomial equality into the model. Consider

the posynomial inequality expression below:

1 ≥ 𝐿 +
𝑃𝑠ℎ𝑎𝑓𝑡,𝑎𝑙𝑡

𝑃𝑠ℎ𝑎𝑓𝑡,𝑚𝑎𝑥

(3.8)

Since the BSFC of a normally aspirated piston engine would be expected to improve

as the 𝑃𝑠ℎ𝑎𝑓𝑡 −→ 𝑃𝑠ℎ𝑎𝑓𝑡,𝑎𝑙𝑡, the maximum shaft power at altitude (𝑃𝑠ℎ𝑎𝑓𝑡,𝑎𝑙𝑡) has down-

ward pressure on it from the fuel burn objective. This means that the inequality

doesn’t adequately lower-bound 𝑃𝑠ℎ𝑎𝑓𝑡,𝑎𝑙𝑡. If we try to flip the inequality in Con-

straint 3.8, then 𝑃𝑠ℎ𝑎𝑓𝑡,𝑎𝑙𝑡 is upper-unbounded, so with our current parametrization

of the shaft power, we must use a signomial equality.

3.4.2 Making use of sensitivities: engine BSFC model

The BSFC is one of the variables that the model is most sensitive to (total sensitiv-

ity over all mission segments of 0.59), and it has yet to be modeled. As stated in

Section 3.4.1, the BSFC of a naturally-aspirated piston engine improves as the engine

puts out more power relative to its maximum power at a given altitude.
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Figure 3-8: BSFC
BSFC𝑚𝑖𝑛

versus
𝑃𝑠ℎ𝑎𝑓𝑡

𝑃𝑠ℎ𝑎𝑓𝑡,𝑎𝑙𝑡
data fit. The dashed monomial fit is not able to

capture the tail ends of the curve, which is resolved by the bounded fit.

BSFC has downward pressure due to the objective function, and therefore must

be lower-bounded. This makes it amenable to posynomial fits. A monomial fit of

the BSFC
BSFC𝑚𝑖𝑛

versus
𝑃𝑠ℎ𝑎𝑓𝑡

𝑃𝑠ℎ𝑎𝑓𝑡,𝑎𝑙𝑡
was created. The result is shown by the dashed line in

Figure 3-8.

Although the RMS error of the fit is low (0.028) due to the small number of data

points, there is a significant deterioration in the quality of the fit as
𝑃𝑠ℎ𝑎𝑓𝑡

𝑃𝑠ℎ𝑎𝑓𝑡,𝑎𝑙𝑡
−→ 1, and

increasing the number of posynomial terms in the fit does not alleviate this problem.

What we can do is put a lower bound on the BSFC of the engine that depends on

the actual lowest BSFC achieved by the engine. The final BSFC relation is shown in

Equation 3.9.

(︂
BSFC

BSFC𝑚𝑖𝑛

)︂0.1

= .984

(︂
𝑃𝑠ℎ𝑎𝑓𝑡

𝑃𝑠ℎ𝑎𝑓𝑡,𝑎𝑙𝑡

)︂−0.0346

,

(︂
BSFC

BSFC𝑚𝑖𝑛

)︂
≥ 1 (3.9)

3.5 Multimission design

Having created a mission profile for the SimPleAC, it only takes one extra level of

hierarchy to do multimission design. Now we vectorize the missions flown by the same

aircraft.
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Figure 3-9: Multimission uni-directional graph, with 𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 2 and 𝑁𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 2.

The vectorization has gone down two levels, where each performance model is

vectorized 𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ×𝑁𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 times, and each mission model is vectorized 𝑁𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

times. The single instance of Aircraft is passed on as an argument to all of these

models, which ensures that both its static and performance constraints are satisfied

for each flight segment of every mission.

3.5.1 Multimission objective functions

The objective function of the Multimission model has to be a posynomial that

puts pressure on the variables in every Mission model. For example, knowing that

𝑊𝑓𝑚
1
N

+ 𝐶 × 𝑡𝑚 is a valid objective function to the single mission, the objective

function below for 𝑁𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

Objective ≥
𝑁𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠∑︁

𝑛=1

𝑊𝑓𝑚

1

N
+ C × 𝑡𝑚 (3.10)

will definitely work, since the same aircraft will fulfill two missions that are thus

linked. Assuming that 𝑁𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 2, note that an objective of the type below will

also work

Objective ≥ 𝑊𝑓𝑚1

1

N
+ C2 × 𝑡𝑚2 (3.11)
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but will require some management in variable boundedness since some internal

variables, namely 𝑊𝑓𝑚2
and 𝑡𝑚1 , can and will diverge to numerical infinity since they

are not necessarily pressured by the objective function. Simply upper-bounding the

variables internally by some large bound will resolve boundedness issues. For this

kind of objective, the performance of the aircraft will be a compromise with respect

to aircraft optimized purely for mission time for the first mission or fuel burn for the

second mission.

3.5.2 Multimission optimization results

The SimPleAC (𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 4) was optimized for the 3 different mission scenarios:

1. M1: A single mission minimizing fuel burn (𝑊𝑓𝑚).

2. M2: A single mission minimizing time cost (C × 𝑡𝑚)

3. MM: A multimission design performing both missions, minimizing fuel burn over

M1 (𝑊𝑓𝑚1
), and mission time over M2 (C2 × 𝑡𝑚2) (objective in Equation 3.11).

The different mission requirements are detailed in Table 3.5. M1 is the same

mission as the one specified in Section 3.2, simulating a standard ferry mission where

we care about fuel consumption. M2 is a dash mission delivering more payload than

M1, where mission time is the objective. Both missions share the same flight altitudes,

takeoff thrust factors and minimum takeoff speeds.

Input M1 M2 Units Description

𝐶 120 360 1
hr hourly cost index

𝑅𝑎𝑛𝑔𝑒 3000 1000 km aircraft range

𝑊𝑝 6250 8000 N payload weight

ℎ𝑐𝑟𝑢𝑖𝑠𝑒 5000 m minimum cruise altitude

𝑇/𝑂𝑓𝑎𝑐𝑡𝑜𝑟 2 takeoff thrust factor

𝑉𝑚𝑖𝑛 25 m
s takeoff speed

Table 3.5: Inputs to the M1 and M2 Mission models.
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The results are shown in Table 3.6. The multimission aircraft represents a com-

promise aircraft that performs both missions with relatively high performance.

Table 3.6: Results of the single- and multi-mission solutions. Italicized values have
been post-processed.

Variables M1 M2 MM1 MM2 Units Description

𝑊 10453 45199 13843 N maximum takeoff weight

𝐴𝑅 18.6 1.66 7.53 − aspect ratio

𝑆 27.8 120.2 36.8 m2 total wing area

𝑊𝑒 72 22730 1425 N engine weight

𝑊𝑤 3553 7457 2935 N wing weight

𝑊𝑤𝑠𝑡𝑟𝑐
1885 245 725 N wing structural weight

𝑊𝑤𝑠𝑢𝑟𝑓
1668 7212 2209 N wing skin weight

𝑊𝑓𝑚 577 7012 1252 1484 N total mission fuel

𝑡𝑚 23.3 4.58 16.4 6.30 hr total mission time

BSFC(avg) 0.320 0.327 0.419 0.326 lb
hp/hr average BSFC

𝑉 (avg) 35.8 122.3 50.8 88.7 m/s average flight velocity

Note that for the two aircraft designed for single missions, the other mission is

infeasible. For the M1 aircraft, M2 is infeasible due to the wing structural limits. For

the M2 aircraft, M1 is infeasible due to inadequate fuel volume. When performing

this kind of multimission design, we ensure that the aircraft design is feasible for each

mission, meaning it is able to perform all of the missions under the sets of static and

performance constraints.

Furthermore, there is evidence to suggest that the solve time of a SP scales sub-

linearly with the number of variables and constraints. So it might be interesting

for a designer to input the entire variety of missions that they expect the design to

perform into a single multimission framework to ensure feasibility, especially if the

mission parameters vary significantly.
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3.5.3 Potential extensions of multimission design

Multimission design and optimization increases the robustness of a design to mission

variability. It would be further strengthened by the application of robust optimization

to the framework. It can be used in the design of modular systems, and systems with

potential present and future extensibility as well. A good example from aircraft design

is the design of a family of aircraft, and more specifically ’stretchable’ aircraft. In this

case, a series of aircraft could be designed that have aerodynamic surfaces and engines

in common, but have different length fuselages to accommodate different numbers of

passengers over different routes of interest.
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Chapter 4

Conclusion

This thesis has demonstrated methods for engineering design and optimization using

geometric programming. It is motivated by the need to reduce the activation energy

required to use optimization for conceptual design. The GP and SP are the mathe-

matical frameworks that enable the intuitive formulation of general physical relations

into optimization-compatible constraints.

In Chapter 2, the ideas of pressure and boundedness were explored in the context of

a GP. The basic aircraft design problem was defined, and the importance of objective

functions and variable freedom was identified in achieving bounded convex problems.

Section 2.4 provided justification for the need to use the non-convex extension of GPs

called SPs in design, with some loss of mathematical guarantees and solution speed.

Fuel volume models provided a meaningful use case for signomial constraints, and the

chapter provided arguments for the use of the signomial equality. The result was a

fully bounded SP-compatible aircraft model that captures fundamental tradeoffs in

conceptual aircraft design.

Chapter 3 introduced the idea of modularity, and improved the fidelity of the air-

craft model by using data-based modeling in Section 3.1. The model was subsequently

modularized into component models, and then into performance and static models in

order to be able to vectorize certain sets of variables and constraints that are repeated

between different mission segments. A logical (but non-unique) hierarchy of models

was presented to allow designers to make decisions about where to locate different
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variables and constraints in the modular mission architecture.

Chapter 3 also presented a case where environmental modeling becomes critical for

designs we trust as engineers. While performing tradespace exploration, an intuitive

way to analyze the components of a multi-objective GP was presented, in an effort to

draw maximal engineering understanding from the tradespaces that were explored.

Before the model was integrated into a multimission framework in Section 3.5, the

SimPleAC engine model was improved upon in response to the sensitivity information.

Potential new objective functions were identified and implemented in the context of

multimission design and optimization. A sample solution of a 2-mission multimission

aircraft design was presented alongside two aircraft optimized for each mission alone

to further motivate the use of multimission MDO.

This thesis has demonstrated how to model a complex engineering system starting

from scratch in GP and SP using component and function based abstractions. Using

tools developed in the CEG, it has outlined methods that allow designers to extract

engineering understanding of the trade spaces using convex and difference-of-convex

methods. Although an aircraft design problem was the focus of this work, these meth-

ods are general to engineering design problems with explicit, continuous constraints,

and lower the barriers to using optimization in engineering design.
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Appendix A

Mathematical Framework

A.1 Geometric Programming1

Introduced in 1967 by Duffin et al. [5], a geometric program GP is a type of constrained

optimization problem that becomes convex after a logarithmic change of variables.

Modern interior point methods allow a typical sparse GP with tens of thousands of

decision variables and tens of thousands of constraints to be solved in minutes on a

desktop computer [2]. These solvers do not require an initial guess, and guarantee

convergence to a global optimum, assuming a feasible solution exists. If a feasible

solution does not exist, the solver will return a certificate of infeasibility. These

impressive properties arise because a GP’s objective and constraints consist of only

monomial and posynomial functions, which can be transformed into convex functions

in log space.

A monomial is a function of the form

𝑚(u) = 𝑐

𝑛∏︁
𝑗=1

𝑢
𝑎𝑗
𝑗 (A.1)

where 𝑎𝑗 ∈ R, 𝑐 ∈ R++ and 𝑢𝑗 ∈ R++. An example of a monomial is the common

1This section has been borrowed from the paper titled Efficient Aircraft Multidisciplinary Design

Optimization and Sensitivity Analysis via Signomial Programming, by Martin York, Berk Ozturk,
Edward Burnell and Warren Hoburg. The paper is undergoing review for publication in the AIAA
Journal as of January 24th, 2018.
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expression for lift, 1
2
𝜌𝑉 2𝐶𝐿𝑆. In this case, u = (𝜌, 𝑉, 𝐶𝐿, 𝑆), 𝑐 = 1/2, and 𝑎 =

(1, 2, 1, 1).

A posynomial is a function of the form

𝑝(u) =
𝐾∑︁
𝑘=1

𝑐𝑘

𝑛∏︁
𝑗=1

𝑢
𝑎𝑗𝑘
𝑗 (A.2)

where 𝑎𝑗𝑘 ∈ R, 𝑐𝑘 ∈ R++ and 𝑢𝑗 ∈ R++. A posynomial is a sum of monomials.

Therefore, all monomials are also one-term posynomials.

A GP minimizes a posynomial objective function subject to monomial equality

and posynomial inequality constraints. A GP written in standard form is

minimize 𝑝0(u)

subject to 𝑝𝑖(u) ≤ 1, 𝑖 = 1, ...., 𝑛𝑝,

𝑚𝑖(u) = 1, 𝑖 = 1, ..., 𝑛𝑚

(A.3)

where 𝑝𝑖 are posynomial functions, 𝑚𝑖 are monomial functions, and u ∈ R𝑛
++ are

the decision variables. Once a problem has been formulated in the standard form

(Equation A.3), it can be solved efficiently.

A.2 Signomial Programming2

It is not always possible to formulate a design problem as a GP. This motivates the

introduction of signomials. Signomials have the same form as posynomials

𝑠(u) =
𝐾∑︁
𝑘=1

𝑐𝑘

𝑛∏︁
𝑗=1

𝑢
𝑎𝑗𝑘
𝑗 (A.4)

but the coefficients, 𝑐𝑘 ∈ R, can now be any (including non-positive) real numbers.

A signomial program (SP) is a generalization of GP where the inequality con-

2This section has been borrowed from the paper titled Efficient Aircraft Multidisciplinary Design

Optimization and Sensitivity Analysis via Signomial Programming, by Martin York, Berk Ozturk,
Edward Burnell and Warren Hoburg. The paper is undergoing review for publication in the AIAA
Journal as of January 24th, 2018.
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straints can be composed of signomial constraints of the form 𝑠(𝑢) ≤ 0.. The log

transform of an SP is not a convex optimization problem, but is a difference of con-

vex optimization problem that can be written in log-space as

minimize 𝑓0(x)

subject to 𝑓𝑖(x) − 𝑔𝑖(x) ≤ 0, 𝑖 = 1, ....,𝑚
(A.5)

where 𝑓𝑖 and 𝑔𝑖 are convex.

There are multiple algorithms that reliably solve signomial programs to local op-

tima [1, 12]. A common solution heuristic, referred to as difference of convex pro-

gramming or the convex-concave procedure, involves solving a sequence of GPs, where

each GP is a local approximation to the SP, until convergence occurs. It is worth

noting that the introduction of even a single signomial constraint to any GP turns

the GP into a SP, thus losing the guarantee of solution convergence to a global op-

timum. Despite the possibility of convergence to a local, not global, optimum, SPs

are a powerful tool. The convex approximation, 𝑓(𝑥), to the non-convex signomial in

log-space, 𝑓(𝑥) − 𝑔(𝑥), is constructed such that it always satisfies

𝑓(𝑥) ≥ 𝑓(𝑥) − 𝑔(𝑥) ∀ 𝑥 (A.6)

In other words, for each constraint, the feasible set of the convex approximation

𝑓(𝑥) ≤ 0 is a subset of the original SP’s feasible set, 𝑓(𝑥) − 𝑔(𝑥) ≤ 0. This means

SP inequalities do not require a trust region, removing the need for trust region

parameter tuning and making solving SPs substantially more reliable than solving

general nonlinear programs. Figure A-1, where a series of convex (GP compatible)

constraints approximates a non-convex parabolic drag polar in log space, illustrates

this property.

Signomial equality constraints can be approximated by monomials as shown in

Figure A-2 and may require a trust region. Trust regions were not used in the pre-

sented model. Signomial equalities are the least desirable type of constraint due the

approximations involved. Most constraints in this work were relaxed to inequali-
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(b) Convex approximation about 𝐶𝐿 = 0.05.
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(c) Convex approximation about 𝐶𝐿 = 0.20.

Figure A-1: A signomial inequality constraint and GP approximations about two
different points.

ties and checked for tightness by GPkit [3]. For additional details on how signomial

equalities are approximated, see Opgenoord et al. [15].

Approximated optimal point

after 1 GP iteration

Projected optimal point

after 1 GP iteration

Figure A-2: The signomial equality constraint 𝐶𝐷 = 𝑓(𝐶𝐿) and its approximation.

64



Appendix B

Model Resources

B.1 Flight segment model variables

Variable Units Description

𝑑ℎ
𝑑𝑡

m
hr

climb rate

ℎ m segment flight altitude

ℎ𝑎𝑣𝑔 m segment average flight altitude

𝑅𝑠 km segment range

𝑊𝑠𝑡𝑎𝑟𝑡 N segment beginning weight

𝑊𝑒𝑛𝑑 N segment end weight

𝑊𝑎𝑣𝑔 N segment average weight

𝑊𝑓𝑠 N segment fuel burn

𝑊𝑓𝑚 N total mission fuel

𝑡𝑠 hr segment time

𝑡𝑚 hr total mission time

Table B.1: Variables introduced in the flight segment model.
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