
Global and Robust Optimization

for Engineering Design

by

Berk Öztürk

S.M., Massachusetts Institute of Technology (2018)
B.S., Massachusetts Institute of Technology (2016)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Berk Öztürk

Department of Aeronautics and Astronautics
January 16, 2022

Certified by. .
Dimitris Bertsimas

Boeing Professor of Operations Research, Sloan School of Management
Thesis Supervisor

Certified by. .
Mark Drela

Terry J. Kohler Professor, Department of Aeronautics and Astronautics
Committee Member

Certified by. .
Robert Haimes

Principal Research Engineer, Department of Aeronautics and Astronautics
Committee Member

Accepted by .
Jonathan P. How

R. C. Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

3

Global and Robust Optimization

for Engineering Design

by

Berk Öztürk

Abstract

There is a need to adapt and improve conceptual design methods through better optimiza-
tion, in order to address the challenge of designing future engineered systems. Aerospace
design problems are tightly-coupled optimization problems, and require all-at-once solu-
tion methods for design consensus and global optimality. Although the literature on design
optimization has been growing, it has generally focused on the use of gradient-based and
heuristic methods, which are limited to local and low-dimensional optimization respectively.
There are significant benefits to leveraging structured mathematical optimization instead.
Mathematical optimization provides guarantees of solution quality, and is fast, scalable, and
compatible with using physics-based models in design. More importantly perhaps, there
has been a wave of research in optimization and machine learning that provides new op-
portunities to improve the engineering design process. This thesis capitalizes on two such
opportunities.

The first opportunity is to enable efficient all-at-once optimization over constraints and
objectives that use arbitrary mathematical primitives. This work proposes a constraint sam-
pling and learning approach for global optimization, leveraging developments in machine
learning and mixed-integer optimization. More specifically, the feasible space of intractable
constraints is sampled using existing and novel design of experiments methods, and learned
using optimal classification trees with hyperplanes (OCT-Hs). OCT-Hs describe union-
of-polyhedra approximations of intractable constraints, which are solved efficiently using
commercial solvers to find near-feasible and near-optimal solutions to the global optimiza-
tion problem. The constraints are then checked and the solution is repaired using projected
gradient methods, ensuring feasibility and local optimality. The method is first tested on
synthetic examples, where it finds the global optima for 9 out of 11 benchmarks, and high-
performing solutions otherwise. Then it is applied to two real-world problems from the
aerospace literature, and especially to a satellite on-orbit servicing problem that cannot
be addressed via other global optimization methods. These applications demonstrate that
decision tree driven optimization provides efficient, practical and optimal solutions to dif-
ficult global optimization problems present in aerospace design as well as other domains,
regardless of the form of the underlying constraints.

The second opportunity is to optimize designs affected by parametric uncertainty in a
tractable and deterministic manner, while providing guarantees of constraint satisfaction.
Inspired by the wealth of literature on robust optimization, and specifically on robust geo-
metric programming, this thesis proposes and implements robust signomial programming to
solve engineering design problems under uncertainty. The methods are tested on a concep-
tual aircraft design problem, demonstrating that robust signomial programs are sufficiently
general to address engineering design problems, solved efficiently by commercial solvers, and

4

result in designs that protect deterministically against uncertain parameter outcomes from
predefined sets. In addition, robust designs are found to be less conservative than designs
with margins; robust aircraft demonstrate 9% better average performance than aircraft
designed with margins over the same scenarios, while providing guarantees of constraint
feasibility.

In anticipation of future aerospace design problems becoming increasingly coupled, com-
plex and risky, this thesis provides a new perspective for dealing with design challenges
using structured mathematical optimization. The proposed methods inject mathematical
rigor into engineering design methods while keeping practical concerns for conceptual design
in focus.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research, Sloan School of Management

Committee Member: Mark Drela
Title: Terry J. Kohler Professor, Department of Aeronautics and Astronautics

Committee Member: Robert Haimes
Title: Principal Research Engineer, Department of Aeronautics and Astronautics

5

Acknowledgements

This thesis has had a particularly windy path to success, and it would not have been pos-
sible if it were not for the people who believed in me, gave me opportunities, and supported
me unconditionally.

I would like to thank my first advisor Woody Hoburg, for giving me an opportunity
in his lab and putting me on a course of academic self-actualization, for lack of a better
description. I still look back fondly at our group meetings, where we would discuss research
over mouthfuls of pizza. It was there that I developed a passion for using optimization to
improve conceptual design, and started asking some of the questions that I would try to
address in this thesis.

After his departure from MIT, I was supervised by Bob Haimes and Prof. Mark Drela.
As I tried to find my own research path, my second and third years in graduate school were
not pretty. Mark and Bob understood that it was not for lack of trying; they supported me
despite the challenges and setbacks, gave me latitude to explore different areas of inquiry, and
always gave honest feedback that pushed me to improve. Their research, their conceptual
design philosophy and our discussions have inspired me greatly. I want to thank Bob doubly
for being an amazing mentor; he is one the most genuine and caring people I know, and I
leant on him for support more times than I can count. Without Bob, I would have pulled
the ripcord on graduate school a long time ago.

Prof. Dimitris Bertsimas was an invaluable final addition to my committee. Even though
Dimitris was my research advisor only during the last two years, Dimitris’ influence is felt
throughout this thesis. His classes and research on robust optimization and machine learn-
ing provided the foundations and major inspirations for my research. When I approached
Dimitris with a proposal for global optimization in Fall 2019, he graciously took me in, and
somehow squeezed more meetings into his busy calendar. Dimitris helped me direct my
creative energy, and provided critical feedback guiding me to success. He cared deeply in
helping me succeed; thank you for your mentorship and support.

I would like to thank my thesis readers Dr. Jack Dunn and Prof. Oli de Weck for their
feedback and guidance through the many phases of my PhD career; Prof. Wes Harris for his
leadership as a housemaster and his presence in my committee deliberations; Ali for being
a great friend, collaborator and RGP savant; Dave Robertson and Todd Billings for always
helping me out with personal projects and for the conversations; my 15.095 students for
motivating me to be the best TA I could be; and finally many other collaborators, labmates
and friends: the 16.82 JHO teams, Riley, Adam, the ACDL, the ORC, MakerWorkshop,
the Convex Engineering Group, the Aircraft Design Club. My sincere apologies for any
omissions.

Four groups deserve special mention. Many thanks to the MIT Cycling Club for taking
me in and enabling me. I had no idea that I would meet some of my best friends in graduate
school and beyond on two wheels; you could not find a more amazing community of caring
and passionate people.

Thanks to the students of Desmond, New House, for sharing their MIT experience with
me and Elise as their GRAs. I am looking forward to what you will accomplish in your
personal and academic lives beyond MIT.

Thanks to the New House GRAs for the amazing work they do supporting students, and

6

for their friendship, which brightened up even the darkest pandemic days.
My friends in Airbus (not the company), you are one of the few constants in my life. I

will never take your friendship for granted.
Thanks to the many other friends without whom I couldn’t have made it. Unfortunately,

that net is cast very wide, so you will remain unnamed lest I forget someone.
Now to family. It’s hard to thank my parents Erdinç and Sevgi Öztürk without trivial-

izing their contributions. Thank you for everything.
Thanks to my second family Kara, Stu, Blaine and Will, for accepting me as their own.
Deniz, it has been a privilege to watch you grow from a small boy to a young man during

the last five years. I am proud of you and I hope you are proud of me too.
Elise, you are the sunshine of my life. You make me a better person, and I hope that

the stars will align and we will be reunited soon.

Contents

1 Introduction 13

1.1 Challenges and trends in aerospace design . 13
1.2 Review of aerospace conceptual design methods 14
1.3 The mathematical optimization design paradigm 19

1.3.1 Mathematical background . 19
1.4 Improving conceptual design through optimization 23
1.5 Thesis objectives and outline . 25

2 Global Optimization via Optimal Decision Trees 27

2.1 Review of global optimization . 29
2.1.1 Role of machine learning in optimization 31

2.2 Review of decision trees . 32
2.3 Contributions . 34
2.4 Method . 35

2.4.1 Standard form problem . 36
2.4.2 Sampling and evaluation of nonlinear constraints 36
2.4.3 Decision tree training . 39
2.4.4 MI approximation . 40
2.4.5 Solution of MIO approximation . 43
2.4.6 Solution checking and repair . 43

2.5 Demonstrative example . 46
2.6 Computational experiments on benchmarks 51
2.7 Real world examples . 53

2.7.1 Speed reducer problem . 53
2.7.2 Satellite OOS problem . 55

2.8 Discussion . 60
2.9 Conclusion . 64

3 Optimal Engineering Design Decisions Under Uncertainty 65

3.1 Approaches to design optimization under uncertainty 66
3.1.1 Comparison of robust and stochastic optimization for design 67

3.2 Contributions . 69
3.3 Mathematical theory of robustness . 70
3.4 Robust signomial programming formulation 71

3.4.1 Review of tractable robust geometric programming 72

7

3.4.2 Solution of robust signomial programs 73
3.5 Aerospace problem . 75
3.6 Uncertainties and sets . 77

3.6.1 Design parameter uncertainties . 77
3.6.2 Uncertainty sets considered . 78

3.7 Results . 79
3.7.1 Mitigation of probability of failure . 79
3.7.2 Effect of robustness on multiobjective performance 82
3.7.3 Risk minimization problems . 86

3.8 Discussion . 87
3.9 Conclusion . 88

4 Conclusion 91

4.1 Overview of contributions . 92
4.2 Potential future applications . 92

A Appendices for Global Optimization via Optimal Decision Trees 95

A.1 OCT-HaGOn implementation . 95
A.2 Optimizers . 95
A.3 Speed reducer problem . 96
A.4 Satellite OOS problem . 97

B Appendices for Optimal Engineering Design Decisions Under Uncertainty101

B.1 RSP implementation . 101
B.2 Review of robust linear programming . 101

8

List of Figures

1-1 Development time of military and commercial aerospace concepts has been
increasing over time, in contrast with the reductions in the automotive industry. 14

1-2 Improvements in computation have not correlated with increased efficiency
in the development of aerospace industry products. 15

1-3 Discipline-specific optimization without knowledge of system-level tradeoffs
can result in suboptimal design decisions. Figure borrowed from [29]. 17

1-4 O-MDO creates an adversarial design environment through its decomposition
approach, creating a push-pull design process. 18

2-1 Maximum wing root bending moment of a commercial aircraft, from [94]. An
explicit constraint. 27

2-2 Drag polars showing the relationship between lift, drag and moment coeffi-
cients, and Reynolds number, as well as the transition location for an airfoil.
An inexplicit constraint. Figure borrowed from [73]. 28

2-3 Two decision trees classifying the Iris dataset using axis-aligned and hyper-
plane splits. Borrowed from [50]. 33

2-4 The distribution of data for constraint 𝑔1(x) ≥ 0, generated by sampling
procedures defined in Section 2.4.2. 47

2-5 The approximating OCT-H achieves a high degree of accuracy, capturing both
the global and local behavior of the constraint 𝑔1(x) ≥ 0. 48

2-6 𝑔1(x) ≥ 0 is approximated via 6 continuous and 2 binary auxiliary variables,
and 6 linear constraints. 49

2-7 𝑔2(x) ≥ 0 is approximated via 8 continuous and 2 binary auxiliary variables,
and 7 linear constraints. 49

2-8 The MIO solution to the demonstrative example is successfully repaired to
be feasible and locally optimal by the PGD method. 50

2-9 The constraint 𝑔5(x) ≥ 0 is accurately approximated by a single separating
hyperplane over dom(x). 54

2-10 The objective function 𝑓(x) is approximated via an ORT-H with 19 leaves (4
leaves shown) and 1− R2 error of 1.4× 10−5. 55

2-11 Client satellites require different amounts of fuel, which affects the optimal
schedule for servicing. 56

2-12 While it captures the orbital dynamics well, OCT-HaGOn is not able to
schedule the phasing orbits as well as the MI-bilinear formulation. 58

9

3-1 SO and RO are methods for optimization under uncertainty that use different
definitions of uncertain inputs and produce different objective outcomes. . . . 67

3-2 A block diagram showing the difference between the design process using a
SP and a RSP. 71

3-3 Partitioning of a large posynomial into smaller posynomials requires the ad-
dition of auxiliary variables. 𝑆𝑖 are posynomials with independent sets of
variables. 73

3-4 A block diagram showing the steps of solving a RSP. 74
3-5 Γ defines the overall size of norm uncertainty sets, while 3𝜎 defines the relative

size of the set in each uncertain parameter. 78
3-6 Simulated cost and PoF of the optimal margin, box, and ellipsoidal aircraft as

a function of Γ. The banded lines represent the mean and standard deviation
of total fuel burn, simulated with 100 MC samples of uncertain parameters. . 81

3-7 Robust aircraft optimization setup and solution times for different RSP ap-
proximations, normalized by the nominal problem solution time, for Γ = 1. . . 82

3-8 Radar plots of aircraft performance. The bolded titles are the optimized ob-
jectives for each plot, and the individual plots show the non-dimensionalized
multiobjective performance of the aircraft, designed under different uncer-
tainty sets. 84

3-9 Sketches of the aircraft for radar plots in Figure 3-8. Drawn to scale for
comparison. 85

10

List of Tables

2.1 Parameters for base decision trees in constraint learning. 39
2.2 Parameters for PGD repair procedure. 46
2.3 The five small nonlinear benchmarks from MINLPLib have a combination of

nonlinear inequalities, equalities and objective. 52
2.4 Solutions to the small benchmarks using OCT-HaGOn and BARON. 52
2.5 The six larger benchmarks from MINLPLib. Note that the objective functions

are linear in x, and that nonlinearities are instead embedded in the constraints. 52
2.6 Solutions to the larger benchmarks using commercial global optimizers (GOs)

and OCT-HaGOn, against best known (BK) solutions. 52
2.7 Both OCT-HaGOn and IPOPT beat the best known (BK) solution of the

speed reducer problem. In addition, OCT-HaGOn has 0 error on constraint
satisfaction. 54

2.8 OOS problem parameters. 56
2.9 The discretized and OCT-HaGOn formulations come up with the same opti-

mal satellite schedule, although the discretized solution performs 0.1% better. 59

3.1 Parameters and uncertainties (increasing order) 77
3.2 SP aircraft optimization results, for Γ = 1. 80
3.3 Non-dimensionalized variations in performance of aircraft optimized for dif-

ferent objectives. Objective values are normalized by the total fuel solution. . 83
3.4 Results of original RO problem versus its goal programming counterpart in

terms of size of uncertainty set Γ, objective penalty 𝛿, and probability of
failure. Both methods use the Best Pairs formulation under ellipsoidal uncer-
tainty. The designs obtained through the two different methods match. 86

A.1 Speed reducer PGD iterations. 97

11

12

Chapter 1

Introduction

Conceptual design is indispensable in aerospace engineering, as we push the envelope of
what is possible with novel vehicle configurations. Aerospace engineers are ever approaching
the limits of the Second Law of Thermodynamics, as they strive for the utopia of faster,
cleaner, more efficient and less noisy. This thesis is motivated by the need to adapt and
improve conceptual engineering design methods through better optimization, to address the
challenge of designing future systems. We assert that conceptual design tools of the future
need to achieve two objectives. The first is to optimize efficiently over a combination of
constraints, models and data without placing restrictions on their mathematical forms. The
second is to capture the effects of uncertainty on design decisions. This thesis proposes
tractable and practical methods that aim to achieve these objectives.

1.1 Challenges and trends in aerospace design

Aerospace design is a particularly complex systems engineering problem. It is multidisci-
plinary, requiring knowledge of physics in many technical disciplines, but also in the social
sciences such as economics and sociology. The interaction of the disciplines is tight, and
the resulting complexity is combinatorial in the number of domains. Aerospace projects are
often expensive and long term, and therefore have high risk and exposure to uncertainty.
There is also little legacy design experience, since very few aerospace products have been
developed and in very limited configurations. Since the aerospace sector is competitive and
secretive, most existing design knowledge is proprietary.

Due to a combination of challenges, the industry has not been able to keep on top of
schedule and cost overruns while developing increasingly complex systems since the 1950’s.
This is especially clear in military aerospace in Figure 1-1, where ‘clean sheet’ designs such
as the B-2 and the V-22 have seen precipitous linear growth in development time since the
mid-1970’s. Even in the context of commercial aircraft, where design progress has been
incremental and there is significant economic pull for fast design cycles, there has been
significant increase in number of years to operational capability. This is in contrast with the
automotive industry which has been improving its design process efficiency dramatically.

These trends are dramatized by the fact that our computational capabilities have in-
creased substantially over the same time period. As shown in Figure 1-2, the number of

13

Figure 1-1: Development time of military and commercial aerospace concepts has been
increasing over time, in contrast with the reductions in the automotive industry.

transistors we can pack on a chip has increased by roughly four orders of magnitude from
1971 to 1996, but this increased computational power has not correlated with a reduction
in engineering hours required in design as expected. And this is only considering hardware
improvements, not to mention the developments in optimization and simulation capabilities,
and other enabling software. It must either be true that the uptake of new design optimiza-
tion methods has been low in industry, or that the methods available do not adequately
address the underlying challenges in conceptual design. In both cases, Figure 1-2 argues
that there is a need to rethink design processes.

1.2 Review of aerospace conceptual design methods

Design stands alone among the many disciplines that aerospace engineering comprises of,
e.g., aerodynamics, structures and dynamics, for the reason that it is truly interdisciplinary.
Design requires knowledge in all relevant fields, and is about making decisions with a knowl-
edge of tradeoffs.

Most aerospace disciplines are technical and technology driven, either discovering fun-
damental science or making breakthroughs with the aim of expanding the realm of the
possible. However, there is a sense that design is as much an art as it is engineering. To

14

Figure 1-2: Improvements in computation have not correlated with increased efficiency in
the development of aerospace industry products.

quote Raymer, a thought leader in design methology, "to some extent good designers ‘are
born, not made’" [78]; there aren’t many domains in engineering that would merit a similar
assessment. While we don’t believe that good design practices are naturally endowed, it
is a fact that a handful of engineers tend to make the majority of key design decisions in
aerospace projects. This is because there are often tradeoffs in design that we are (at least
at a given time) unable to capture, either because we do not yet understand how to model or
optimize them in a computational framework, or when we do, the design problems quickly
become intractable. These challenges incentivize leveraging the limited expertise of a small
number of design engineers, who use their intuition to make decisions, even when faced with
concepts where they have little prior experience.

Increasingly however, new advances in numerical methods and improvements in compu-
tation are changing norms in aerospace design. This revolution has been most notable in the
increase in accuracy and time efficiency of analysis methods [85], and especially in computa-
tional fluid dynamics (CFD). Numerical methods have the potential to improve the design
process, by allowing us to better capture complex physics and consider tradeoffs through
multidisciplinary design optimization (MDO); they may thus remove the need to rely on

15

imperfect intuitions and democratize the decision making process. Sobieszczanski-Sobieski
and Haftka [85] argue that improved computation has resulted in three major thrusts in
MDO in aerospace research and industry. We paraphrase these as:

1. few-disciplinary optimization (FDO), which focuses on design problems where
there are ‘two or three interacting disciplines’ requiring a narrow scope of expertise to
avoid ‘organizational challenges’ or ‘the need for multiobjective optimization’.

2. conceptual system-level design optimization (CSDO), which deals with system-
level design at the conceptual level using simple, modular analysis tools and/or models,
which become more sophisticated during the conceptual design process.

3. organizational MDO (O-MDO), which focuses on organizational coordination
challenges by decomposing the system into disciplinary modules and using global sen-
sitivity techniques to couple them, in an attempt to improve data transfer without
requiring modifications to existing subsystem design methods. O-MDO is often used
to link existing FDO architectures.

1.2.1 A perspective on MDO methods

However, not all MDO approaches are created equal. This section compares CSDO
approaches to FDO and O-MDO approaches which are especially prevalent in the aerospace
industry, and highlights the relative strengths of CSDO. There is significant literature on
different types of optimization problems used in engineering design, which Martins et al.
classify broadly as all-at-once (AAO) architectures and distributed architectures [66].

CSDO occurs almost exclusively using AAO architectures which include full coupling
of all system variables and constraints. As such, a CSDO model reflects the physics of
the real system as closely as practically possible. In contrast, FDO and O-MDO are used
in distributed architectures where design problems are partitioned into subproblems and
coupled using "complicating constraints" [24]. The primary motivation for decomposing
AAO problems "comes from the structure of the engineering-design environment" [66]. The
disciplinary groups "may be geographically distributed and may communicate infrequently,
(and) typically like to retain control of their own design procedures and make use of in-house
expertise" [66].

This is costly in several respects. Firstly, discipline-specific optimizations without abil-
ity to perform system-level tradeoffs can result in suboptimal design decisions. A good
demonstration is in Figure 1-3. In absence of the ability to concurrently optimize an aircraft
and powerplant, aircraft and engine companies can only see the gradient of their objective
function (in green) in the degrees of freedom (DOF) that they control. As a result, their
domain-specific optimizations produce low-impact locally optimal designs that are far from
the true optimum of the system.

There are other practical concerns for implementing FDO approaches on subproblems.
In absence of the ability to make system-level decisions, FDO problems contend with incon-
gruity between the DOF available for optimization and the number of constraints, where
unsupervised optimization can result in designs that are impractical for real-world appli-
cations. Paraphrasing Drela [28], to avoid this pitfall, the number of degrees of freedom

16

Figure 1-3: Discipline-specific optimization without knowledge of system-level tradeoffs can
result in suboptimal design decisions. Figure borrowed from [29].

(i.e. free variables of the system) have to be of similar order as the number of constraints
imposed on the system. FDO formulations often have a disproportional number of DOF
to the number of constraints or operating conditions because of the inability to observe
system-level tradeoffs.

Furthermore, the use of FDO for local optimization without a sufficient understanding
of uncertainty can be unproductive. FDO tools, while accurate for assessing performance
under particular conditions, are subject to a similar level of parametric uncertainty to all
MDO tools and are imprecise at predicting performance under real conditions. This results
in the purported benefit from FDO optimizations often being of the same order of magnitude
as the uncertainty in the objective function due to unknown but estimated parameters.

Proponents of O-MDO would argue that O-MDO methodically couples FDO methods
to overcome FDO’s suboptimality and DOF issues, and that it targets global optimality
and design efficiency. O-MDO is the dominant form of optimization in the aerospace indus-
try [5], and the data suggests a weak track record in achieving either of these objectives (see
Figures 1-1 and 1-2). Belie, an aerospace industry insider, elaborates on the non-technical
barriers for MDO in the aerospace industry in [5] using the cartoon from Figure 1-4, and
gives a perspective on how existing O-MDO approaches result in suboptimal systems and
organizational outcomes: "Unfortunately the humor reinforces the sad misperception that
conflict is a natural feature of product development when, in fact, conflict is more an arti-
fact of the decomposition process itself." [5] The "armies", each with their own hierarchies,
create "walls and moats" around their respective disciplines, "isolating communication and
fragmenting the solution space as yet another barrier to achieving shared best systems de-
sign." [5]

Thus, to achieve real design consensus and global optimality, it is necessary that there is
an ability to perform AAO optimization, which can only occur through CSDO architectures

17

Figure 1-4: O-MDO creates an adversarial design environment through its decomposition
approach, creating a push-pull design process.

that are created collaboratively and revised dynamically. CSDO is key for “true integration”
as discussed by Agte et al. [1], where the ideal engineered systems are designed in real time,
responding to models, analyses and inputs generated by subsystem teams. It is the aim of
this thesis to propose methods for engineering design that enable such CSDO at all stages
of the design process.

18

1.3 The mathematical optimization design paradigm

Tractability and practicality of CSDO can be a challenge. Nonlinear optimization methods
such as gradient and heuristic methods have made remarkable breakthroughs in MDO, but
their scope is limited to local and low-dimensional MDO respectively. An alternate approach
is mathematical optimization, i.e. disciplined formulation of engineering design problems
using specific mathematical structure. As such, we propose the disciplined formulation of
CSDO problems in forms compatible with linear and convex optimization, i.e. efficient
mathematical programs1. The three mathematical forms of interest are the linear program
(LP), the geometric program (GP) and the signomial program (SP), and their mixed integer
(MI) counterparts.

The primary benefits of these mathematical programs in engineering design are summa-
rized below:

� Physics-based design: The mathematical structure of LPs, GPs and SPs allow clear
synergies with design [72]. The language of inequalities allows for designers to have
a clear understanding of tradeoffs as they formulate optimization-compatible design
models.

� Mathematical guarantees: Since LPs and GPs are convex optimization problems,
their solutions are guaranteed to be globally optimal. In Chapter 3, their mathematical
structures also enable tractable methods for optimization under uncertainty.

� Sensitivities: LPs and GPs allow for parameter and constraint sensitivities to be
computed at essentially zero computational cost [45].

� Extensibility: LPs and GPs can be modular and arbitrarily complex, and many
kinds of engineering problems can be cast as LPs or GPs. SPs extend the capabilities
of GPs to encompass even more challenging design problems [54].

� Speed: The speed of LPs has been demonstrated widely in the solution of large-scale
optimization problems. Kirschen [53] quantitatively demonstrates that GPs and SPs
are superior to other nonlinear programming methods in both solution quality and
speed as well.

In the following sections, we give a formal mathematical background on LPs, GPs and
SPs, as well as on mixed integer optimization (MIO).

1.3.1 Mathematical background

We first introduce notation that will be important in the following chapters. Then we refresh
the reader on the form of LPs, GPs and SPs; which are optimization methods that we rely
on for conceptual design in this thesis.

1Program/programming refers to the mathematical formulation of an optimization problem.

19

Notation

Bold letters (e.g. x) indicate the multi-dimensionality of variables and functions. [𝑛] denotes
the set of indices {1, . . . , 𝑛}. We let || · ||𝑝 denote the standard 𝑝-norm; if 𝑝 is not indicated,
then it is the Euclidian norm with 𝑝 = 2.

Linear programming

Linear programming is the most fundamental of mathematical programs, and is an opti-
mization problem of the form

min c⊤x

s.t. Ax ≤ b,

x ∈ R𝑛.

(1.1)

Since the objective and constraints in a LP are linear, there are some valuable parallels
between linear programming and solutions of linear systems. Mainly, the LP solves an
underdetermined linear system Ax ≤ b while minimizing a linear function c⊤x. Conversely,
finding the solution of a full rank linear systemAx = b is equivalent to solving the equivalent
LP with a single feasible point.

However, the solution methods for linear systems and LPs are markedly different. Linear
systems are generally solved via a series of elimination steps, where row operations are
performed so that variables are hierarchically eliminated from each row of the A matrix.
The final result is a row echelon form of A, which can easily be solved to find the value of
x satisfying Ax = b.

On the other hand, since a LP is a linear system with an infinite number of solutions,
LPs are generally solved via Dantzig’s Simplex method, which relies on visiting the extreme
points of the polyhedron defined by the constraint Ax ≤ b in a sequence of pivot operations,
i.e. moves between basic solutions across an edge of the feasible polyhedron. The algorithm
terminates when there are no adjacent basic solutions to the incumbent with lower cost [14].
In the worst case, the Simplex method takes exponential-time, since the number of extreme
points of a polyhedron increases exponentially with the number of variables and constraints.
However, the worst case performance is only seen in rare degenerate cases, and in practice
the method can solve large-scale linear programs with large numbers (106) of variables and
constraints in minutes on unremarkable personal computers.

Geometric programming

Geometric programming is a method of log-convex optimization that has been developed
to solve problems in engineering design [31]. A geometric program in posynomial form is a
log-convex optimization problem,

min 𝑓0 (u)

s.t. 𝑓𝑖 (u) ≤ 1, 𝑖 ∈ [𝑚𝑝],

ℎ𝑖 (u) = 1, 𝑖 ∈ [𝑚𝑒],

u ∈ R𝑛
++,

(1.2)

20

where each 𝑓𝑖 is a posynomial, each ℎ𝑖 is a monomial, 𝑚𝑝 is the number of posynomials, and
𝑚𝑒 is the number of monomials. A monomial ℎ𝑖(u) is a function of the form

ℎ𝑖(u) = 𝑒𝑏𝑖
∏︀𝑛

𝑗=1𝑢𝑗
𝑎𝑖𝑗 , (1.3)

where 𝑎𝑖𝑗 is the 𝑗𝑡ℎ component of a row vector ai in R𝑛, 𝑢𝑗 is the 𝑗𝑡ℎ component of a
column vector u in R𝑛

++, and 𝑏𝑖 is in R. An example of a monomial is the lift equation,
𝐿 = 1

2𝜌𝑉
2𝐶𝐿𝑆. A posynomial 𝑓𝑖(u) is the sum of 𝐾 ∈ Z+ monomials,

𝑓𝑖(u) =
∑︀𝐾

𝑘=1𝑒
𝑏𝑖𝑘
∏︀𝑛

𝑗=1 𝑢𝑗
𝑎𝑖𝑘𝑗 , (1.4)

where 𝑎𝑖𝑘𝑗 is the 𝑗𝑡ℎ component of a row vector aik in R𝑛, 𝑢𝑗 is the 𝑗𝑡ℎ component of a
column vector u in R𝑛

++, and 𝑏𝑖𝑘 is in R [16]. The stagnation pressure definition is a good
example of a posynomial: 𝑃𝑡 = 𝑃 + 1

2𝜌𝑉
2.

A logarithmic change of the variables 𝑥𝑗 = log(𝑢𝑗) would turn a monomial into the
exponential of an affine function and a posynomial into the sum of exponentials of affine
functions. A transformed monomial ℎ𝑖(x) is of the form

ℎ𝑖(x) = 𝑒ai
⊤x+𝑏𝑖 , (1.5)

where x is a column vector in R𝑛. A transformed posynomial 𝑓𝑖(x) is the sum of 𝐾𝑖 ∈ Z+

monomials,
𝑓𝑖(x) =

∑︀𝐾𝑖
𝑘=1𝑒

aik
⊤x+𝑏𝑖𝑘 , (1.6)

where x is a column vector in R𝑛. A geometric program with transformed constraints is a
geometric program in exponential form, and is a convex optimization problem. Geometric
programming in exponential form also has an interesting parallel with linear programming,
mainly that the logarithm of monomials is linear: log(ℎ𝑖(x)) = ai

⊤x + 𝑏𝑖. This is why
monomials can be used in equality constraints as well as inequalities.

Although theory of the GP has existed since the 1960’s, GPs have recently experienced
a resurgence due to the advent of polynomial-time interior point methods [70] and improve-
ments in computing. Interior point methods transform the constrained convex optimization
problem into an unconstrained convex optimization problem by introducing barrier func-
tions, which add penalties to constraint violation in the objective function. Then, starting
from an initial feasible point, they apply Newton’s method to the unconstrained optimiza-
tion problem until the Karush-Kuhn-Tucker (KKT) conditions are met, guaranteeing global
optimality.

GPs are particularly attractive for engineering design because the constraints comply
with power law forms. Boyd’s tutorial on GPs [16] contains a number of examples of engi-
neering problems that are compatible with geometric programming. Since many engineering
problems of interest have strictly positive variables, GPs are quite applicable, and certain
variable transformations can make problems with negative quantities tractable. GPs have
been effective in addressing a subset of aircraft conceptual design problems [45, 20, 73].
However, the restriction of posynomials to the less-than-side of inequalities is a significant
barrier to the use of GPs in other contexts, and motivates the introduction of signomials.

21

Signomial programming

The SP is the difference-of-log-convex extension of the GP, albeit with the loss of some
mathematical guarantees compared to the GP [54]. A signomial can be defined as the
difference of two posynomials. Consequently, a SP is a non-log-convex optimization problem,

minimize 𝑓0(u)

s.t. 𝑓𝑖(u)− 𝑔𝑖(u) ≤ 0, 𝑖 ∈ [𝑚],

u ∈ R𝑛
++,

(1.7)

where 𝑓0, 𝑓𝑖 and 𝑔𝑖 are all posynomials. Reliably solving a SP to a local optimum has
been described in [16] and [59]. A common solution heuristic involves solving a SP as a
sequence of GPs, where each GP is a local log-convex approximation of the SP. Signomial
programming has been used to great effect in modeling and designing complex aircraft at a
conceptual level quickly and reliably [94, 54, 52].

Mixed-integer optimization

The above optimization formulations can be extended to include integer variables in x,

x ∈ X ⊆ {Z𝑘 ∪ R𝑛−𝑘}. (1.8)

An optimization problem is called a MIO problem when it has a combination of continuous
and integer variables. The most common example of a MIO problem is the mixed integer
linear optimization (MILO),

min c⊤x

s.t. Ax ≤ b,

x ∈ X ⊆ {Z𝑘 ∪ R𝑛−𝑘}.
(1.9)

In MIO, many integer variables commonly show up as binary variables, which are re-
stricted to the {0, 1} domain. Binary variables are most often used to indicate logical
constraints, such as but not limited to and, or, or if-then relationships. Integer variables
otherwise show up in design problems where we must select from among a set of discrete
options, such as materials, components or configurations.

A MILO is more difficult to solve than its linear relaxation, because the extreme points of
the polyhedron described by the constraint Ax ≤ b are non-integral in the integer variables
with high probability. The other cases are so-called locally ideal formulations; Vielma defines
a MILO formulation as locally ideal if and only if its linear relaxation has a basic feasible
solution and all basic feasible solutions are integral in the integer variables [91].

In general, MIO problems are solved using branch-and-bound methods. These methods
first solve a continuous relaxation of the original optimization problem. Then, the solution
is repaired to integrality through a series of hierarchical branching operations, building a
branch-and-bound tree. New constraints are added to the relaxation at each branch of the
tree to restore integrality to subsets of integer variables. The optimal solution of each re-
laxation at a tree node is a lower bound on the solutions of branches originating from that

22

node. New integral basic feasible solutions throughout the tree are upper bounds on the
true optimum, which are used to prune the branches of the branch-and-bound tree to reach
faster convergence. The optimum is reached when we have pruned or processed all branches
and found the objective-minimizing leaf node.

1.4 Improving conceptual design through optimization

Mathematical optimization has been implemented for CSDO in many engineering fields
with great success. There is a wealth of literature on the applications of convex and mixed-
integer convex optimization to fields as diverse as signal processing [60], microgrid energy
management [40], and guidance and control of aerospace vehicles [64]. Boyd et al. sum-
marize a variety of successful applications of geometric programming and its extensions in
engineering [16].

However, there are new developments in mathematical programming that have flourished
in the operations research and optimization literature, but have yet to update and upgrade
existing conceptual engineering design methods. Thus, many cutting edge methods in op-
timization have yet to be translated to improvements in conceptual design process. This
thesis is an interdisciplinary work in engineering and optimization that bridges the gap. We
propose leveraging several developments in the fields of mixed-integer optimization, machine
learning, and robust optimization to address two opportunities to extend the capabilities of
MDO methods.

The first challenge in MDO we address is the ability to more effectively incorporate arbi-
trary constraints, black boxes and data into optimization models. One of the disadvantages
of the mathematical optimization design paradigm is the requirement for constraints to be
of compatible mathematical forms, and more specifically to be restricted to a specific set
of mathematical primitives. This precludes the use of constraints that are inefficient (e.g.
nonconvex), inexplicit (e.g. results of simulations), or data-driven (e.g. results of past sim-
ulations or experiments). Conceptual design is the phase of the design process that has the
greatest impact on the success of an engineering project, and it is also the phase where we
must reconcile the greatest variety of models. It is thus critical to improve the compatibility
of efficient optimization with general explicit and inexplicit constraints.

A majority of approaches in the literature address this challenge through parameter
learning, i.e. function fitting. More specifically, they fit the underlying constraints or data
with more mathematically efficient representations, albeit with some loss of accuracy. Some
good examples of parameter learning are work by Magnani et al. [63] and Hoburg et al. [44],
who have addressed the problems of convex polynomial and posynomial fitting respectively,
as a method to incorporate functions or data into efficient optimization. However, these
methods assume that the underlying function has a convexity or log-convexity property,
which is a strong assumption given that many real-world functions do not exhibit such
behavior. Some examples of explicit nonconvex functions that are commonly found in nature
are sigmoids, sinusoids and the logarithm. In addition, the methods consider parameter
learning without the potential for efficient design of experiments in the learning process.

To improve our ability to include arbitrary constraints in a MDO, or more generally a
global optimization framework, we propose a more general constraint learning framework
that leverages modern machine learning (ML) techniques. Using optimal decision trees,

23

and a suite of existing and novel sampling techniques, we generate optimization-compatible
constraints from arbitrary constraints, black boxes or data. These surrogates are MIO-
compatible, and thus allow for the incorporation of aforementioned classes of intractable
constraints into efficient optimization, without making assumptions on the forms of the
underlying constraints. We are then able to solve these MIO approximations, and repair
them to find optimal solutions to the original design problems.

The second challenge is the ability to tractably and deterministically consider uncertainty
in the design process. Few design optimization tools in the aerospace literature can consider
risk due to parametric uncertainty. A 2018 review by Papageorgiou et al. [75] lists a few such
tools under the umbrella of non-deterministic approaches, i.e. stochastic optimization. These
state-of-the-art stochastic methods assume that uncertain parameters come from known
probability density functions, and propagate these functions through physical models of
the engineered system to determine their effects on constraint feasibility and the objective
function. However, these methods have been shown to be impractical and intractable for
addressing real-world problems, and make the unrealistic assumption of known probability
distributions. Perhaps more importantly however, these approaches are non-deterministic by
definition; it is unsatisfactory for aerospace engineers to arrive at different optimal designs
depending on the random outcomes of uncertain parameters from unknown but assumed
distributions.

In this thesis, we propose addressing engineering design problems under uncertainty via
robust optimization (RO), i.e. optimization over parameters belonging in an uncertainty set.
RO has several important advantages over stochastic optimization. Instead of requiring that
uncertain parameters come from known probability distributions, RO requires the milder
assumption that the parameters belong in an uncertainty set, e.g., ellipsoidal or box sets.
Using the robust counterpart of the design problem, RO can address design under uncertainty
in a deterministic manner. Specifically, the optimal design is one that satisfies all constraints
under all outcomes of parameters from the uncertainty set, while minimizing the worst-case
objective.

The use of RO in other engineering fields is not a new development by any means;
notable applications from structural optimization to circuit design are summarized in [8].
However, aerospace system design under uncertainty requires the formulation of robust
counterparts for optimization problems that adequately capture aerospace physics. To design
aerospace systems deterministically under uncertainty, we propose the formulation of robust
signomial programs, which have shown promise in the design optimization of aerospace
systems [94, 54, 52]. The proposed robust signomial programming framework can address a
variety of engineering design problems, and will increase confidence in the ability of systems
to satisfy constraints under uncertain parameter outcomes. By extension, such a rigorous
integration of uncertain parameters into design methods will improve trust in design tools.

With the methods from this thesis, engineers will have the potential to consider system-
level tradeoffs under a general, tractable and practical framework, leveraging modern mixed-
integer optimization, machine learning and robust optimization techniques that have ma-
tured outside of the science and engineering literature.

24

1.5 Thesis objectives and outline

In summary, we propose to investigate the following two key questions for CSDO methods:

� How do we generate tractable optimization models that can consider arbitrary explicit
and inexplicit constraints that describe the physical world?

� How do we tractably and deterministically optimize systems that are robust against
uncertain outcomes?

Though we focus primarily on applications in aerospace engineering, the proposed meth-
ods are general to a wide array of design and decision making problems. Chapter 2 in-
troduces constraint learning via optimal decision trees, enabling global optimization over
general explicit and inexplicit constraints. The only requirement for the proposed method
is a bounded domain over the decision variables in learned constraints. Chapter 3 describes
the formulation of robust signomial programs, a scalable and deterministic RO approach to
designing aerospace systems under parametric uncertainty.

Chapters 2 and 3 are predominantly standalone. They motivate and demonstrate the
need for the proposed methods, and review the state-of-the-art in academic literature. They
provide the requisite mathematical knowledge before proposing new methods to tackle each
design optimization challenge. The chapters describe the methods in complete detail before
applying them to a number of benchmark and real-world problems. The software imple-
mentations of the two methods can be found via links in Appendices A.1 and B.1. This
thesis develops interdisciplinary work that meshes developments in optimization, operations
research and machine learning with engineering design, with contributions in all four fields.

25

26

Chapter 2

Global Optimization via Optimal

Decision Trees

Engineering design is often informed by a combination of explicit and inexplicit constraints.
We define explicit constraints as those that can be represented in closed form, i.e. using
a finite number of directly computable mathematical primitives. These are the ones most
commonly faced in the early phases of conceptual design. An example explicit constraint
acts on the aircraft in Figure 2-1, and is the maximum wing root bending moment constraint
from [94]. The constraint states that the maximum moment at the wing root is greater than
or equal to the maximum moments due to lift and weight forces integrated over the wing.
This ensures that the wing root can support the most strenuous forces during steady flight.

𝑀𝑟𝑐root ≥
(︁
𝐿wing,max −𝑁lift(𝑊wing + 𝑓fuel,wing𝑊fuel,total)

)︁(︃ 𝑏2𝑤
12𝑆𝑤

(𝑐root + 𝑐tip)

)︃
−𝑁lift𝑊engine𝑦engine

Figure 2-1: Maximum wing root bending moment of a commercial aircraft, from [94]. An
explicit constraint.

27

Inexplicit constraints do not have closed form representations. A good aerospace example
is drag polars, as shown in Figure 2-2, which describe the relationship between the coefficients
of lift and drag of an airfoil at different Reynolds numbers. These physical relationships
are described by the Navier-Stokes equations for the motion of viscous fluids. Since these
relationships are simulated approximately via XFOIL [27], a black box tool, they have no
analytical representations.

Figure 2-2: Drag polars showing the relationship between lift, drag and moment coefficients,
and Reynolds number, as well as the transition location for an airfoil. An inexplicit con-
straint. Figure borrowed from [73].

Both explicit and inexplicit constraints can pose significant challenges for optimization
of real-world systems, since they may not conform to efficient mathematical forms. Explicit
constraints may be nonlinear and nonconvex, meaning that they cannot be addressed by
linear and convex optimization methods which have guarantees of global optimality. While
many inexplicit constraints exhibit convex behavior and are well approximated by convex
functions [62, 44], this is in general a strong assumption, and many inexplicit systems have
outputs of interest that are nonlinear and nonconvex functions of the input data.

Optimization over general constraints and objective functions is called global optimiza-
tion. The meaning of global is two-fold. Most explicitly, global optimization problems look
for global optima over the feasible set of decision variables. But additionally, the optimizers
are global in the sense of generality, i.e. having the ability to be applied to constraints and
objective functions with arbitrary mathematical primitives. This is where most existing
global optimizers falter, by placing restrictions on the types of constraints allowed. This
chapter aims to improve the state of the art in global optimization by using modern ML
methods for constraint learning, especially to derive optimization-compatible (i.e., mixed
integer linear or convex) constraints from arbitrary constraints, models or data.

28

2.1 Review of global optimization

More formally, global optimization seeks to address the following problem,

min
x

𝑓(x)

s.t. g(x) ≥ 0,

h(x) = 0,

x ∈ Z𝑚 × R𝑛−𝑚,

(2.1)

where 𝑓 , g and h are the objective function, inequality constraints and equality constraints,
respectively, and x is a vector of decision variables. The objective functions and constraints
may or may not conform to any specific mathematical structure, unlike linear or convex
optimization problems, and variables can be continuous or integer.

Existing global optimizers approximate problem (2.1) into forms compatible with effi-
cient optimization. These optimizers use three major approaches, which are gradient-based
methods, outer approximations, and MIO methods. The gradient-based approach is used
by popular nonlinear solvers such as CONOPT and IPOPT. These solvers initialize their
solution procedure using feasible solutions found via efficient heuristics. Then, they solve
a series of gradient descent iterations, confirming optimality via satisfaction of the KKT
conditions. As detailed by Drud [30], CONOPT relies on a generalized reduced-gradient
algorithm, linearizing the constraints and solving a sequence of linear-searching gradient
steps, maintaning feasibility to tolerance at each step. Wachter and Biegler [92] describe
IPOPT’s primal-dual barrier approach. It relaxes the constrained global optimization prob-
lem into an unconstrained optimization problem using a logarithmic barrier function, then
uses a damped Newton’s method to reduce the optimality gap to a desired tolerance. These
gradient-based optimizers are efficient and effective in the presence of nonlinear constraints
that are sparse, being able to solve problems on the order of 1000 variables and constraints
on unremarkable personal computers in minutes to local optimality.

Another approach is an outer approximation approach, described by Horst et al. [46].
This approach simplifies a global optimization problem by approximating constraints via
linear and nonlinear cuts that preserve the original the feasible set over decision variables x.
This approach is effective for constraints with certain mathematical structure (e.g., linearity
of integer variables and convexity of nonlinear functions considered by Duran and Gross-
mann [34], or concavity or bilinearity of constraints considered by Bergamini et al. [7]),
where mathematically efficient outer approximators exist. While these approaches are effec-
tive, they have found less commercial success due to their problem specific nature.

A final approach, and one that meshes naturally with optimization over integer variables,
couples MIO with outer approximations. Ryoo and Sahinidis [79] present an impactful ap-
proach called the branch-and-reduce method, which relies on recursively partitioning the
domain of each constraint and objective over the decision variables, and bounding their
values in each subdomain by examining their mathematical primitives. Such recursive par-
titioning creates a branch-and-bound tree, the solution to which has guarantees of global
optimality through the bounding and pruning process inherent in solving MIO problems via
branch-and-bound. This method has seen success in BARON [81], a popular commercial
global optimizer.

29

While the aforementioned approaches are effective in addressing certain classes of global
optimization problems, each of these approaches has weaknesses. In general, gradient-based
approaches rely on good initial feasible solutions, and are ineffective in presence of integer
decision variables. Outer approximation approaches fail to generalize to global optimization
problems with general nonlinearities. While being more general than outer approximation
methods, existing MIO approaches don’t scale as well due to their combinatorial nature.

Perhaps more importantly, in pursuit of mathematical efficiency, many global optimizers
place additional constraints on the forms of constraints, requiring constraints to use a small
subset of possible mathematical primitives. For example, BARON “can handle functions
that involve exp(𝑥), ln(𝑥), 𝑥𝛼 for real 𝛼, and 𝛽𝑥 for real 𝛽" [81]. Constraints from the
real world do not always adhere to these forms, and often involve other classes of functions
such as trigonometric functions, signomials, and piecewise-discontinuous functions. It is
often not possible to transform these functions into forms compatible with existing global
optimizers. These optimizers face even greater challenges when dealing with objectives and
constraints that are black box. Black box constraints are inexplicit, meaning that they have
no analytical representations, such as when constraints are the outcomes of simulations.

In this chapter, we propose a new approach to reformulate global optimization problems
as MIO problems using ML, leveraging work by Bertsimas and Dunn [10, 11] on the optimal
classification tree with hyperplanes (OCT-H) and the optimal regression tree with hyper-
planes (ORT-H). The approach addresses global optimization with arbitrary explicit and
inexplicit constraints. The only requirement for the proposed method is a bounded feasible
domain for the subset of decision variables x present in nonlinear constraints.

In our proposed method, we approximate each constraint that is outside of the scope
of efficient mathematical optimization using an OCT-H. More specifically, each nonlinear
constraint 𝑔𝑖(x) ≥ 0 is approximated by an OCT-H 𝑇𝑖 trained on data {(x̃𝑘, I(𝑔𝑖(x̃𝑘) ≥
0)), 𝑘 ∈ [𝑛]}, where x̃𝑘 is an outcome of decision variables, I is the indicator function,
and 𝑔𝑖(x̃𝑘) is the left-hand-side of the constraint evaluated at x̃𝑘. Thus, tree 𝑇𝑖 makes an
approximation of the feasible space of constraint 𝑔𝑖(x) ≥ 0, predicting (with some error)
whether an outcome of decision variables satisfies the constraint. This approach also extends
to approximate each nonlinear equality ℎ𝑗(x) = 0, and approximates nonlinear objective
functions via ORT-Hs.

The approximating trees allow for a natural MIO approximation of the underlying con-
straints. Each feasible leaf of an OCT-H is reached by a decision path defining an intersection
of halfspaces, i.e. a polyhedron. Constraints may thus be approximated as a union of fea-
sible polyhedra of the approximating OCT-Hs using disjunctive constraints. We solve this
efficient MIO approximation of the original problem to obtain a near-feasible and near-
optimal solution, and then use gradient-based methods to repair the solution to be feasible
and locally optimal.

The proposed method has several strengths relative to other global optimization meth-
ods. It is agnostic of the forms of constraints in the problem; as long as we can query whether
a sample x̃ is feasible to a constraint, we can embed the constraint into the MIO approxima-
tion. Once the constraints are learned using decision trees, the solution time of the resulting
MIO approximation is low compared to solving the original global optimization problem.
The proposed method can also be used to generate constraints from data which may not
come from any known function, simulation or distribution. This allows us to simultaneously

30

learn the physics of complex phenomena such as but not limited to social dynamical models
or solutions of partial differential equations, and embed them into optimization problems.

In this chapter, we present our global optimization approach, implemented in our opti-
mizer OCT-H for Global Optimization (OCT-HaGOn), pronounced “octagon”. We demon-
strate its promise by considering global optimization problems with explicit nonlinear con-
straints. This allows us to quantify the performance of our method against existing global
optimizers using available benchmarks. In addition, we approximate all nonlinear constraints
in the benchmarks regardless of their efficient optimization-representability. The proposed
method extends to mixed-integer-convex approaches where we embed efficiently-optimizable
nonlinear constraints (e.g., quadratic, second order conic, log-sum-exponential constraints)
into the MIO formulation directly, as long as these constraints are supported by the under-
lying solver.

2.1.1 Role of machine learning in optimization

The role of optimization in training ML models is well known and studied. Recent review
papers in the literature [38, 86] survey the landscape of mathematical optimization and
heuristic methods used for a variety of ML applications. However, we are interested in the
inverse of the above, and specifically how ML can be used for the purpose of optimiza-
tion, especially to solve problems that cannot naturally be posed as efficient optimization
problems.

There is precedent for using ML methods to improve computational efficiency. A promi-
nent example is the use of ML to accelerate the simulation of nonlinear systems such as those
in computational fluid dynamics [55], molecular dynamics [39] and quantum mechanics [69].
There has been some prior work using ML to accelerate optimizations, e.g., using Bayesian
optimization [35] or neural networks [87]. While these show that ML-driven optimization
is theoretically possible, the proposed methods are computationally expensive and not scal-
able for real-world problems. An interesting parallel use of ML in optimization is in the
interpretation of optimal solutions, where ML is used to understand the optimal strategies
(i.e. outcomes of all or subsets of decision variables) resulting from an optimization problem
under different parameters [9].

In this work, we use ML to find optimal solutions to global optimization problems involv-
ing both explicit constraints with arbitrary mathematical primitives, and inexplicit black
box functions. For this purpose, ML is used for constraint learning within two capacities.
The first capacity is to accelerate optimizations over known models. When models and/or
constraints are known but their use is prohibitive, e.g. in the case of explicit but nonlinear
and nonconvex constraints, learners are used to create surrogates that are more efficient for
use in optimization. The second is in modeling. When data is available but models and/or
constraints are black box, learners act as interpolants to the data, and to allow patterns in
the data to be embedded in optimization.

Using ML in optimization in both of these capacities requires that the approximating
ML models are optimization-representable. While many types of ML models are efficiently
queried and accurate, e.g., many types of neural networks and Gaussian processes, they
cannot be embedded explicitly into structured optimization. Prior work has recognized
the potential for using constraint learning approaches in optimization over data-driven con-

31

straints. Both Biggs et al. [15] and Mišić [68] use the prediction of tree ensembles as the
objective function of optimization problems, given that a subset of tree features are decision
variables. Maragno et al. [65] go further and present a more general approach for data-driven
optimization that leverages decision trees as well as other MIO-compatible ML models such
as support vector machines and neural networks.

The aforementioned applications of decision trees in optimization are restricted in scope.
[15] and [68] limit their applications to optimization over data-driven objective functions,
where decision trees are used to regress on a continuous quantity of interest. And while
Maragno et al. [65] use constraint learning for data-driven constraints, we use constraint
learning to make approximations of intractable explicit and inexplicit constraints as well,
where we have the capacity to sample the underlying constraints to generate data. Thus we
propose a global optimization framework that can accommodate arbitrary explicit, inexplicit
and data-driven constraints, leveraging decision trees in regression and classification settings.

While it is possible to use other MIO-compatible ML models for constraint learning in
global optimization as proposed by Maragno et al. [65], we choose to rely on ORT-Hs and
OCT-Hs since they are tunable, accurate and interpretable [11]. In the following sections,
we demonstrate that a global optimization method leveraging optimal decision trees makes
significant progress in using ML for both acceleration of optimizations and modeling, using
the natural and intuitive MIO representation of trees.

2.2 Review of decision trees

Decision trees is a popular predictive ML method that partitions data hierarchically accord-
ing to its features. A class label in a finite set of possible labels is assigned to each leaf node
of the tree depending on the most common label of the data falling into the node. This
capability is demonstrated in Figure 2-3, where two different decision trees are trained on
a data set with 𝑛 = 150 points and 𝑚 = 4 features. The top tree with axis-aligned splits
is called an optimal classification tree (OCT), and the bottom tree with hyperplane splits is
called an OCT-H. The three colors indicate the actual class 𝑦𝑖, 𝑖 = [1, 2, 3] that each data
point corresponds to, where the axes 𝑥1 and 𝑥2 show the values of the first two features.
The partitions in the middle plots indicate how the points are classified according to the
trees. Note that it is possible and probable that there is some misclassification error on the
training data. Notably, all points in green have been properly classified by both models,
however, the blue and orange points have some margin of error.

The optimization problem that is solved to produce a decision tree 𝑇 ∈ T over known
data (x,y) is the following:

min
𝑇

error(𝑇,x,y) + 𝑐𝑝 · complexity(𝑇),

where 𝑐𝑝 is a complexity penalty parameter which attempts to strike a balance between the
misclassification error over the test data and complexity (depth and breadth) of the tree.
Once trained, decision trees are queried to predict the classes of test points with known
features, but unknown class. In this particular case, a test point 𝑥̃ = [2, 1] (red asterisk)
would be classified as green in the top tree, whereas in the bottom tree it would be classified

32

F
ig
ur
e
2-
3:

T
w
o
de
ci
si
on

tr
ee
s
cl
as
si
fy
in
g
th
e
Ir
is
da
ta
se
t
us
in
g
ax
is
-a
lig
ne
d
an
d
hy
p
er
pl
an
e
sp
lit
s.

B
or
ro
w
ed

fr
om

[5
0]
.

33

as blue.
Decision trees were pioneered by Breiman et al. with the advent of classification and

regression trees (CART) [17]. However, CART is a top-down, greedy method of producing
decision trees. Each split is only locally optimal since the splits are made recursively on
the children of each new split starting from the root node. The ability of decision trees to
explore the feature space has improved with the work of Bertsimas and Dunn [32, 11] on
the OCT. OCTs leverage MIO and local search heuristics to reduce misclassification error
relative to CART without overfitting. Furthermore, OCTs are more interpretable, since they
can achieve similar mean squared error (MSE) error as trees generated by CART with much
less complexity.

OCT-Hs generalize OCTs by allowing for hyperplane splits, i.e. splits in more than
one feature at a time. An OCT-H can solve classification problems with higher accuracy
and lower complexity than an OCT [11], and is more expressive in an optimization setting
due to couplings of decision variables in nonlinear constraints. Thus, our method leverages
OCT-Hs exclusively to approximate constraints.

ORT-Hs extend OCT-Hs to regression problems, where the prediction of interest is
continuous, i.e. 𝑦 ∈ R. Each leaf of an ORT-H, instead of containing a fixed class prediction,
contains a continuous prediction 𝑦 as a linear regression over x in the domain of the leaf.
ORT-Hs are particularly useful when approximating nonlinear objective functions.

We rely on software from the company Interpretable AI (IAI) in building, training and
storing problem data in the form of OCT-Hs and ORT-Hs [48].

2.3 Contributions

In this thesis, we propose a global optimization approach that generalizes to explicit and in-
explicit constraints and objective functions over bounded dom(x). Our specific contributions
are as follows:

1. We introduce an ensemble of methods for sampling constraints efficiently for the pur-
pose of constraint learning. We leverage synergies of existing design of experiments
(DoE) techniques, but also devise a new 𝑘-Nearest Neighbors (𝑘NN) based sampling
technique for sampling near-feasible points of explicit and inexplicit constraints.

2. We learn the feasible space of nonlinear objectives, inequalities and equalities using
OCT-Hs and ORT-Hs.

3. We make MIO approximations of global optimization problems using the disjunctive
representations of decision trees, and solve them using MIO solvers.

4. We devise a projected gradient descent method to check and repair the near-feasible,
and near-optimal solutions from the MIO approximations.

5. We apply our method to a set of benchmark and real-world problems, and demonstrate
its performance in finding global optima.

In Section 2.4, we detail our method, followed by a demonstrative example in Section 2.5.
In Section 2.6, we test our method on a number of benchmark problems from the literature,

34

and compare our results with state-of-the-art global optimization tools such as BARON,
IPOPT and CONOPT. In Section 2.7, we use our method to optimize two aerospace systems,
one of which cannot be addressed via existing global optimization tools. In Section 2.8, we
discuss the results, the limitations of the method, and avenues for future research. Section 2.9
concludes by summarizing our findings and contributions.

2.4 Method

As aforementioned, our goal is to solve the global optimization problem approximately by
making an OCT-H based MIO approximation, and then repairing the solution to be feasible
and locally optimal. As an overview of this section, our method takes the following steps:

1. Generate standard form problem: In order to reduce the global optimization
problem to a tractable MIO problem, we first restructure the global optimization
problem in (2.1). The linear constraints are passed directly to the MIO problem,
while the nonlinear constraints are approximated in steps 2-6 below. If any variables
involved in nonlinear constraints are unbounded from above and/or below, we attempt
to compute bounds for the purpose of sampling.

2. Sample and evaluate nonlinear constraints: The data used in training is impor-
tant for the accuracy of ML models. For accurate OCT-H approximations of nonlinear
constraints, we use fast heuristics and DoE methods to sample variables over dom(x).
We evaluate each constraint over the samples, and resample to find additional points
near the constraint boundary for local approximation refinement.

3. Train decision trees over constraint data: The feasibility space of each constraint
is classified and approximated by an OCT-H. If the objective function is nonlinear, it
is regressed and approximated via an ORT-H.

4. Generate MI approximation: The decision paths and hyperplane splits are ex-
tracted from the trees, and used to formulate efficient MIO approximations of the
nonlinear constraints using disjunctions.

5. Solve MIO approximation: The resulting MIO problem is optimized using com-
mercial solvers to get an approximate solution.

6. Check and repair solution: The MIO problem approximates the global optimiza-
tion problem, so the optimum is likely to be near-optimal and near-feasible. We
evaluate the feasibility of each nonlinear constraint, and compute the gradients of the
objective and nonlinear constraints using automatic differentiation. In case of subop-
timality or infeasibility, we perform a number of projected gradient descent steps to
repair the solution, so that it is feasible and locally optimal.

We describe the steps in greater detail in Sections 2.4.1 through 2.4.6. A step-by-step
demonstration of the method, as implemented in our optimizer OCT-HaGOn, can be found
in Section 2.5.

35

2.4.1 Standard form problem

We restructure the global optimization problem posed in (2.1) by separating the linear and
nonlinear constraints. The linear constraints are passed directly into a MIO model, while
the nonlinear constraints are stored for approximation. If constraints are black box, they are
assumed to be nonlinear as well. This restructured problem is shown in (2.2), and referred
to as the standard form. Note that the standard form allows for both nonlinear inequalities
and equalities.

min
𝑥

𝑓(x)

s.t. 𝑔𝑖(x) ≥ 0, 𝑖 ∈ 𝐼,

ℎ𝑗(x) = 0, 𝑗 ∈ 𝐽,

Ax ≥ b, Cx = d,

𝑥𝑘 ∈ [𝑥𝑘, 𝑥𝑘], 𝑘 ∈ [𝑛].

(2.2)

Variable outer-bounding

The proposed method requires boundedness of decision variables x in each approximated
constraint so that we can sample dom(x) for constraint evaluation. When bounds are missing
for any variable 𝑥𝑘 in a nonlinear constraint, we pose the following optimization problem
over the linear constraints only.

min/max
𝑥

𝑥𝑘

s.t. Ax ≥ b, Cx = d

𝑥𝑖 ∈ [𝑥𝑖, 𝑥𝑖], 𝑖 ⊆ [𝑛].

(2.3)

The solution to this problem is the absolute largest range [𝑥𝑘, 𝑥𝑘] that satisfies all linear
constraints as well as bounds on 𝑥𝑖, for those indices 𝑖 for which 𝑥𝑖 is bounded. We can also
solve the above optimization problem to tighten bounds on variables with existing bounds.
Tighter bounds can significantly improve solution quality and time by improving the quality
of ML approximations.

2.4.2 Sampling and evaluation of nonlinear constraints

For the purpose of constraint learning, we require data over variables and corresponding
left-hand-side values of nonlinear constraints. The importance of the quality of data for the
accuracy of machine learning tasks is well known and studied since the 1990’s [25]. Thus, the
distribution of data points used for constraint learning is critical. The samples over dom(x)
should be sufficiently space-filling so that the behavior of each constraint is captured over the
whole dom(x). In addition, we require sufficient concentration of points near the constraint
boundary so that learners are adequately trained to predict the feasibility of near-feasible
points.

To achieve both of these objectives, we take a disciplined approach to sampling, and
generate data over dom(x) for each constraint in several stages. Note that the sampling and

36

evaluation steps in the following subsections are performed constraintwise.

Boundary sampling

We first sample the corners of the x hypercube for the constraint, defined by 𝑥𝑘 ∈ [𝑥𝑘, 𝑥𝑘], 𝑘 ⊆
[𝑛], in an effort to capture extremal points. We call this boundary sampling. This is combi-
natorial in the number of variables in each nonlinear constraint; a constraint with 𝑝 bounded
variables would require 2𝑝 samples. In practice, we sample a limited combination of corner
points, depending on the number of variables in the constraint.

Optimal Latin hypercube sampling

Next, we implement optimal Latin hypercube (OLH) sampling over the x hypercube. There
is a wealth of literature starting with McKay et al. [67] that demonstrates the strength of
Latin hypercube (LH) sampling versus other methods for DoE. However, LH sampling is
not in general a maximum entropy sampling scheme [83], i.e. the samples from LHs do not
optimize information gained about the underlying system. OLH sampling is the entropy
maximizing variant of LH sampling for a uniform prior, where our entropy function is the
pairwise Euclidian distances between sample points [3]. The uniform prior assumption is
logical since we do not have or require an initial guess for where in the x hypercube the
optimal solution will land, and the constraints are treated as black boxes.

OLH sampling, unlike standard LHs, is space-filling and thus useful for learning the global
behavior of constraints using ML models. In practice, OLH generation is time-consuming
and impractical. Instead, we use an efficient heuristic proposed by Bates et al. [4], which uses
a permutation genetic algorithm to find near-optimal solutions to the OLH problem with low
computational cost. We terminate the genetic algorithm prematurely in our optimization
scheme, since samples are not required to be optimally distributed.

Constraint evaluation

We use the samples to either compute the left-hand-side of the constraint, or the feasibility of
the constraint if the left-hand-side is not available. If the constraint is an equality ℎ𝑗(x) = 0,
we relax it and treat it as an inequality ℎ𝑗(x) ≥ 0 until Section 2.4.4. The result is a
{0, 1}𝑛 feasibility vector corresponding to each of the 𝑛 samples, defining the classes for the
classification problem.

If desired, assuming that constraints use a common set of samples, it is possible to lump
the feasibility of a set of inequality constraints by taking the row-wise minimum of their
joint feasibility over the same data. This can reduce the model complexity, but we currently
do not consider this in our method.

𝑘NN quasi-Newton sampling

The previous sampling methods achieve a space-filling distribution of samples in dom(x) to
enable approximating OCT-Hs to learn the feasibility of each constraint in a global sense.
We still require sufficient concentration of points near the constraint boundary, i.e. points
x̃𝑖 so that 𝑔(x̃𝑖) ≈ 0, so our OCT-H models are trained to classify such near-feasible points
accurately.

37

Assuming that the first stage sampling and evaluation has found at least one feasible
point to the constraint, in this step, we attempt to sample near the constraint boundary
using a method we’ve developed called 𝑘NN quasi-Newton sampling. The method hinges
on using 𝑘NN to generate near-feasible neighborhoods for the constraint over previous data
(x̃, ỹ), and using approximate gradients in these neighborhoods to find new near-feasible
samples ũ, with vanishing 𝑔(𝑢̃𝑖) = 𝜖 → 0. We present the method in Algorithm 1.

Algorithm 1: 𝑘NN quasi-Newton sampling
Result: Sample points near the feasibility boundary of constraints.
Find 𝑘 = 𝑝+ 1 nearest neighbors: 𝜉 = [𝑘NN(x̃𝑖, x̃), ∀𝑖 ∈ [𝑛]];
Classify feasibility 𝑘NN patches: 𝜑 ∈ {feasible, infeasible,mixed}n;
Initialize new sample container ũ = []. ;
for 𝑖 ∈ [𝑛]: do

if 𝜑𝑖 = mixed and x̃𝑖 infeasible then
for 𝑗 ∈ [𝑘] do

if x̃𝜉𝑖,𝑗 feasible then
Augment ũ: secant method(x̃𝑖, 𝑦𝑖, x̃𝜉𝑖,𝑗 , 𝑦𝜉𝑖,𝑗)

The method is described as follows. Starting from space-filling data (x̃, ỹ) where 𝑦𝑖 =
𝑔(x̃𝑖), we find the 𝑘-nearest points for each sampled point x̃𝑖 in the 0-1 normalized x hyper-
cube. In our particular implementation, we use 𝑘 = 𝑝+1, where 𝑝 is the number of variables
in constraint 𝑔(x) ≥ 0. For each 𝑘NN cluster with index 𝑖 centered at x̃𝑖 with 𝑘−1 neighbor
indices 𝜉𝑖, we determine if all sample points are feasible, all points are infeasible, or points
are mixed-feasibility.

In each cluster with mixed-feasibility points, we perform the secant method between
points of opposing feasibility. The secant method is an approximate root finding algorithm
defined by the following recurrence relation

x̃𝑘 = x̃𝑗 − 𝑦𝑗
x̃𝑗 − x̃𝑖

𝑦𝑗 − 𝑦𝑖
, (2.4)

where x̃𝑖 and x̃𝑗 are points of opposing feasibility in the same mixed-feasibility neighborhood,
and x̃𝑘 is a new candidate root. The secant method thus allows us to efficiently generate
roots x̃𝑘 that would be expected to be near the constraint boundary, using combinations
of points x̃𝑖 and x̃𝑗 from the space-filling OLH samples. We ensure that each pair of 𝑘NN-
adjacent points on the constraint boundary results in only one new point, by only sampling
within mixed-feasibility 𝑘NN cells if their centroid is infeasible, and then only sampling
between the infeasible centroid and surrounding feasible points in the 𝑘NN cell.

Once we have performed the 𝑘NN sampling process and have new samples ũ, we evaluate
the left-hand-side 𝑔(x) over the samples and add them to data (x̃, ỹ) before proceeding to
the tree training step.

38

2.4.3 Decision tree training

We use trees to approximate the nonlinear constraints in our global optimization problem
due to their MIO representability, which we will demonstrate in Section 2.4.4. We use
software from the company IAI in building, training and storing problem data in the form
of OCT-Hs and ORT-Hs [48]. We train trees exclusively with hyperplane splits due to their
higher approximation accuracy and lower tree complexity.

The trees are trained on all available data instead of a subset of the data as would
be expected in traditional ML. In addition, we penalize tree complexity very little. This
is because our data is noise-free, and approximation accuracy is important in the global
optimization setting. In the case where the constraints are generated on noisy data, we
would allow for the splitting of data into training and test sets, and cross-validate over a
range of parameters.

We use the base OCT-H and ORT-H parameters in Table 2.1 within IAI when initializing
constraint learning instances. These parameters are used for all computational benchmarks
throughout the chapter unless stated otherwise. The parameters have been chosen to balance
tree accuracy with tree complexity and associated computational cost, and may be tuned
by users as they find necessary.

Parameter OCT-H ORT-H
Hyperplane sparsity All All
Regression sparsity - All

Max depth 5 5
Complexity factor 10−6 10−6

Minbucket 0.01 0.02
Random tree restarts 10 10
Hyperplane restarts 5 5

Table 2.1: Parameters for base decision trees in constraint learning.

Our training loss function for OCT-Hs is misclassification error. If a tree is a function
that maps feature inputs into classes (𝑇 : x −→ 𝑦), the misclassification error is simply the
weighted proportion of samples that are misclassified by the tree, where I is the indicator
function and 𝑤𝑖 are the sample weights. An exact classifier would have a misclassification
error of 0.

misclassification error =
1

𝑛

∑︀𝑛
𝑖=1𝑤𝑖 · I(𝑇 (x𝑖) ̸= 𝑦𝑖)∑︀𝑛

𝑖=1𝑤𝑖
.

For ORT-Hs used to approximate objective functions, we use 1−R2 as the loss function,
where R2 is the coefficient of determination. An exact regressor would have a 1− R2 value
of 0.

1− R2 =

∑︀𝑛
𝑖=1(𝑇 (x𝑖)− 𝑦𝑖)

2∑︀𝑛
𝑖=1(𝑇 (x𝑖)− 𝑦)2

, where 𝑦 =
1

𝑛

𝑛∑︁
𝑖=1

𝑦𝑖.

39

2.4.4 MI approximation

From this section forward, we recognize that the global optimization problem is approxi-
mated constraint-wise, and introduce indices 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 for the inequality and equal-
ity constraints respectively. Having classified the feasible space of nonlinear inequalities
𝑔𝑖(x) ≥ 0, 𝑖 ∈ 𝐼 and relaxed nonlinear equalities ℎ𝑗(x) ≥ 0, 𝑗 ∈ 𝐽 using OCT-Hs, we
retighten equalities to ℎ𝑗(x) = 0, 𝑗 ∈ 𝐽 , and pose the feasible x-domains of each tree
as unions of polyhedra. In this section, we define mathematically the set of disjunctive
MI-linear constraints that represent the trees exactly.

Nonlinear inequalities

The tree 𝑇𝑖 that classifies the feasible set of nonlinear inequality 𝑔𝑖(x) ≥ 0 has a set of leaves
𝐿𝑖, where a subset of leaves 𝐿𝑖,1 ⊂ 𝐿𝑖 are classified feasible (where the indicator function
I(𝑔𝑖(x) ≥ 0) = 1) and 𝐿𝑖,0 ⊂ 𝐿𝑖 are classified infeasible (I(𝑔𝑖(x) ≥ 0) = 0). The decision
path to each leaf defines a set of separating hyperplanes, 𝐻𝑖,𝑙, where 𝐻𝑖,𝑙,− and 𝐻𝑖,𝑙,+ are
the set of leftward (less-than) and rightward (greater-than) splits required to reach leaf 𝑙
respectively. The feasible polyhedron of tree 𝑇𝑖 at feasible leaf 𝑙 ∈ 𝐿𝑖,1 is thus defined as

P𝑖,𝑙 = {x : 𝛼⊤
ℎ x ≤ 𝛽ℎ, ∀ ℎ ∈ 𝐻𝑖,𝑙,− ; 𝛼⊤

ℎ x ≥ 𝛽ℎ, ∀ ℎ ∈ 𝐻𝑖,𝑙,+}. (2.5)

The feasible set of x over constraint 𝑔𝑖(x) ≥ 0 is approximated by the union of the
feasible polyhedra in (2.5). More formally,

x ∈
⋃︁

𝑙∈𝐿𝑖,1

P𝑖,𝑙. (2.6)

This union-of-polyhedra representation can described by a set of disjunctive constraints
involving a big-M formulation. Vielma [91] describes many such “projected" formulations;
the specific disjunctive representation of OCT-Hs approximating nonlinear inequalities is as
follows:

x ∈
⋃︁

𝑙∈𝐿𝑖,1

P𝑖,𝑙 ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ 𝛼⊤
ℎ x ≤ 𝛽ℎ +𝑀(1− 𝑧𝑖,𝑙), ∀ ℎ ∈ 𝐻𝑖,𝑙,− ;

𝛽ℎ ≤ 𝛼⊤
ℎ x+𝑀(1− 𝑧𝑖,𝑙), ∀ ℎ ∈ 𝐻𝑖,𝑙,+}, ∀ 𝑙 ∈ 𝐿𝑖,1,∑︁

𝑙∈𝐿𝑖,1

𝑧𝑖,𝑙 = 1,

𝑧𝑖,𝑙 ∈ {0, 1}, 𝑙 ∈ 𝐿𝑖,1,

𝑀 > |𝛽ℎ|, 𝑀 > max
dom(x)

|𝛼⊤
ℎ x|, ∀ ℎ ∈ 𝐻𝑖,𝑙, 𝑙 ∈ 𝐿𝑖,1.

(2.7)

Membership of x in polyhedron P𝑖,𝑙 is defined by binary variable 𝑧𝑖,𝑙. The constraint∑︀
𝑙∈𝐿𝑖,1

𝑧𝑖,𝑙 = 1 ensures that x is in exactly one feasible polyhedron. However, the formula-
tion above requires knowing the value of 𝑀 with sufficient accuracy, which can be difficult
in practice. The value of 𝑀 is important; too small an 𝑀 means that the constraint is
insufficiently enforced, and too large an 𝑀 can cause numerical issues. Knowing M to a
sufficient tolerance can require solving the inner maximization in (2.7) over dom(x), and
even declaring a separate 𝑀ℎ for each separating hyperplane ℎ ∈ 𝐻𝑖,𝑙.

40

Alternatively, we derive a representation that completely avoids the need to compute
big-M values, since we restrict ourselves to x ∈ [x,x]. The tradeoff is that we require the
addition of auxiliary variables y𝑙 ∈ R𝑝𝑖 , for each leaf 𝑙 ∈ 𝐿𝑖,1, where 𝑝𝑖 is the dimension
of variables in constraint 𝑖. We present the big-M free representation of OCT-Hs used
to approximate nonlinear inequalities in (2.8). The formulation is an application of basic
extended disjunctive formulations for defining unions of polyhedra, as detailed by Vielma
[91].

x ∈
⋃︁

𝑙∈𝐿𝑖,1

P𝑖,𝑙 ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ 𝛼⊤
ℎ y𝑙 ≤ 𝛽ℎ𝑧𝑖,𝑙, ∀ ℎ ∈ 𝐻𝑖,𝑙,− ;

𝛽ℎ𝑧𝑖,𝑙 ≤ 𝛼⊤
ℎ y𝑙, ∀ ℎ ∈ 𝐻𝑖,𝑙,+} ∀ 𝑙 ∈ 𝐿𝑖,1,

y𝑙 ∈ [x𝑧𝑖,𝑙,x𝑧𝑖,𝑙], 𝑙 ∈ 𝐿𝑖,1,∑︁
𝑙∈𝐿𝑖,1

y𝑙 = x,∑︁
𝑙∈𝐿𝑖,1

𝑧𝑖,𝑙 = 1,

𝑧𝑖,𝑙 ∈ {0, 1}, 𝑙 ∈ 𝐿𝑖,1.

(2.8)

Just as the big-M formulation, whether or not x lies in polyhedron P𝑖,𝑙 is defined by
binary variable 𝑧𝑖,𝑙 ∈ {0, 1}. If x is in P𝑖,𝑙, then x = y𝑙. If not, y𝑙 = 0. Thus x can only lie
in the leaves of 𝑇𝑖 that are classified feasible.

Notably, formulation (2.8) is locally ideal, i.e. its continuous relaxation has at least one
basic feasible solution, and all its basic feasible solutions are integral in z𝑖 [91]. This confers
computational advantages in optimization over such disjunctions compared to its big-M
variant. Since disjunctive formulation (2.8) is tractable and big-M free, we implement it in
OCT-HaGOn.

Nonlinear equalities

Nonlinear equalities can also be approximated by OCT-Hs. To do so, we simply relax
ℎ𝑗(x) = 0 to ℎ𝑗(x) ≥ 0 and fit an OCT-H 𝑇𝑗 to the feasible set of this constraint, with
polyhedra P𝑗,𝑙, where 𝑙 can lie in feasible leaves 𝐿𝑗,1 and infeasible leaves 𝐿𝑗,0. The feasible
set of the original equality must be represented by the union of the polyhedral faces between
the feasible and infeasible leaves. It is critical to note however that this is not equivalent
to the union of polyhedral faces, x ∈

⋃︀
𝑙∈𝐿𝑗

faces(P𝑗,𝑙), since some of the faces separate
two feasible spaces from each other, and thus would not be valid constraint boundaries.
We are only interested in polyhedral faces that separate feasible polyhedra from infeasible
polyhedra, where ℎ𝑗(x) ≥ 0 and ℎ𝑗(x) ≤ 0. Therefore the approximate equality is the union
of intersections of all permutations of a feasible polyhedron with an infeasible polyhedron,

x ∈
⋃︁

𝑙0∈𝐿𝑗,0, 𝑙1∈𝐿𝑗,1

{P𝑗,𝑙0 ∩P𝑗,𝑙1}. (2.9)

To ensure that x lies on a face between a feasible and an infeasible polyhedron, we
allocate a binary variable 𝑧𝑗,𝑙 for each leaf 𝑙 ∈ 𝐿𝑗 . We make sure that x lies in exactly one
feasible and one infeasible polyhedron by having exactly two non-zero 𝑧𝑗,𝑙’s, one in a feasible
leaf 𝑙 ∈ 𝐿𝑗,1 and the other in an infeasible leaf 𝑙 ∈ 𝐿𝑗,0. Thus we represent the approximate

41

equality as the following set of disjunctive big-M constraints, where 𝐿𝑗 = {𝐿𝑗,1 ∪ 𝐿𝑗,0} are
the combined set of feasible and infeasible leaves of tree 𝑇𝑗 .

x ∈
⋃︁

𝑙0∈𝐿𝑗,0,
𝑙1∈𝐿𝑗,1

{P𝑗,𝑙0 ∩P𝑗,𝑙1} ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{ 𝛼⊤

ℎ x ≤ 𝛽ℎ +𝑀(1− 𝑧𝑗,𝑙), ∀ ℎ ∈ 𝐻𝑗,𝑙,− ;

𝛽ℎ ≤ 𝛼⊤
ℎ x+𝑀(1− 𝑧𝑗,𝑙), ∀ ℎ ∈ 𝐻𝑗,𝑙,+}, ∀𝑙 ∈ 𝐿𝑗 ,∑︁

𝑙∈𝐿𝑗,0

𝑧𝑗,𝑙 = 1,
∑︁
𝑙∈𝐿𝑗,1

𝑧𝑗,𝑙 = 1,

𝑧𝑗,𝑙 ∈ {0, 1}, 𝑙 ∈ 𝐿𝑗 .

(2.10)

This guarantees that x falls on a polyhedral face that separates a feasible and infeasible
polyhedron, thus approximating ℎ𝑗(x) = 0. As we have done for nonlinear inequalities,
we can come up with an equivalent big-M-free formulation as follows, and implement it in
OCT-HaGOn.

x ∈
⋃︁

𝑙0∈𝐿𝑗,0,
𝑙1∈𝐿𝑗,1

{P𝑗,𝑙0 ∩P𝑗,𝑙1} ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ 𝛼⊤
ℎ y𝑙 ≤ 𝛽ℎ𝑧𝑖,𝑙, ∀ ℎ ∈ 𝐻𝑖,𝑙,− ;

𝛽ℎ𝑧𝑖,𝑙 ≤ 𝛼⊤
ℎ y𝑙, ∀ ℎ ∈ 𝐻𝑖,𝑙,+}, ∀ 𝑙 ∈ 𝐿𝑗 ,

y𝑙 ∈ [x𝑧𝑖,𝑙,x𝑧𝑖,𝑙], 𝑙 ∈ 𝐿𝑗 ,∑︁
𝑙∈𝐿𝑖,1

y𝑙 = x,
∑︁
𝑙∈𝐿𝑖,0

y𝑙 = x,∑︁
𝑙∈𝐿𝑖,1

𝑧𝑖,𝑙 = 1,
∑︁
𝑙∈𝐿𝑖,0

𝑧𝑖,𝑙 = 1,

𝑧𝑖,𝑙 ∈ {0, 1}, 𝑙 ∈ 𝐿𝑗 .

(2.11)

Note that nonlinear equalities pose the greatest challenge for any global optimization
method, since the 𝜖-feasible space of equalities is restrictive.

Nonlinear objectives

We treat nonlinear objectives 𝑓(x) differently than constraints. Constraints are represented
well by classifiers because constraints partition the space of x into feasible and infeasible
classes. Nonlinear objectives however are continuous with respect to x, and are thus better
approximated by regressors. To approximate a nonlinear objective function 𝑓(x), we train an
ORT-H on sample data {x̃𝑖, 𝑓(x̃𝑖)}𝑛𝑖=1, and replace the nonlinear objective with the auxiliary
variable 𝑓*. We lower bound the value of 𝑓* using the disjunctive constraints derived from
the ORT-H, thus approximating the original objective function.

We can apply the same logic to constraints of the form a⊤x+ 𝑏 ≥ 𝑔(x), where the left-
hand-side is affine and separable from the nonlinear component 𝑔(x). Since a⊤x+𝑏 is linear
and MIO-compatible, we instead train an ORT-H on sample data {x̃𝑖, 𝑔(x̃𝑖)}𝑛𝑖=1, and make
sure that a⊤x + 𝑏 is lower bounded by the approximating ORT-H. It is the choice of the
user whether or not to use OCT-Hs or ORT-Hs to approximate separable constraints, but
in general an ORT-H is more accurate in these cases. All problems addressed in Section 2.6
treat constraints as non-separable, and use classifiers to approximate them. To solve the
satellite scheduling problem in Section 2.7.2, we take advantage of this separability and
choose to train ORT-Hs instead.

Since an ORT-H is an OCT-H with additional regressors added to each leaf, the disjunc-

42

tive constraints in (2.8) and (2.11) apply with minor modifications described as follows. 𝐿𝑓

is the set of leaves of the approximating ORT-H; assuming that 𝑓(x) can be evaluated on
dom(x), all leaves 𝑙 ∈ 𝐿𝑓 of the ORT-H can feasibly contain x, meaning that the disjunctions
are applied to all leaves instead of a subset of the leaves of the tree. Each leaf 𝑙 ∈ 𝐿𝑓 has a
set of separating hyperplanes that is described by its decision path, as well as an additional
separating hyperplane described by the regressor in each leaf.

For objectives and separable inequalities, instead of using the regressor within each leaf
of the ORT-H directly, we run a secondary linear regression problem on the points within
each leaf to find the tightest lower bounding hyperplane on the data. This allows us to have
an approximate relaxation of the constraint or objective function, and tighten the relaxation
later via solution repair in Section 2.4.6.

2.4.5 Solution of MIO approximation

Having represented the feasible space of inequality and equality constraints as a unions of
polyhedra, we have the following final problem.

min
𝑥

𝑓*

s.t. 𝑓*,x ∈
⋃︁
𝑙∈𝐿𝑓

P𝑖,𝑙,

x ∈
⋃︁

𝑙∈𝐿𝑖,1

P𝑖,𝑙, ∀ 𝑖 ∈ 𝐼,

x ∈
⋃︁

𝑙0∈𝐿𝑗,0, 𝑙1∈𝐿𝑗,1

{P𝑗,𝑙0 ∩P𝑗,𝑙1}, ∀𝑗 ∈ 𝐽,

Ax ≥ b, Cx = d,

𝑥𝑘 ∈ [𝑥𝑘, 𝑥𝑘], 𝑘 ∈ [𝑛].

(2.12)

This is a MILO that can be efficiently solved using branch-and-bound methods. We
use CPLEX for this purpose, since it is available free of charge to solve small scale MILO
instances.

2.4.6 Solution checking and repair

The optimum obtained in Section 2.4.5 is likely to be near-optimal and near-feasible to the
original global optimization problem, since the MIO is approximate. To repair the solution
in case of suboptimality or infeasibility, we devise and present a local search procedure based
on projected gradient descent (PGD). PGD is a method for constrained gradient descent
that is reliable, scalable and fast for the local optimization required to restore feasibility
and optimality to approximate solutions. It relies on using gradients of the constraints and
objective to simultaneously reduce constraint violation (by projecting x* onto the feasible
space of x) and the objective function value. Our particular implementation of PGD solves
a series of gradient-driven MIO problems to do so.

To obtain the gradients of explicit and inexplicit constraints, we leverage automatic

43

differentiation (AD), and specifically forward mode AD. Forward mode AD looks at the
fundamental mathematical operations involved in evaluating the constraint functions, and
thus computes the gradient of each constraint exactly at any solution x* [90]. Unlike finite
differentiation, AD does not require additional function evaluations or discretization, and
unlike symbolic differentiation, it doesn’t require the constraints to be explicit.

The proposed PGD method begins by first evaluating the objective and all constraints
at x*, the last known optimum, as well as their gradients. The disjunctive approximations
of nonlinear inequality constraints are replaced by linear approximators based on the local
constraint gradient, depending on the feasibility of each constraint:

𝑔𝑖(x) ≥ 0 →

{︃
∇𝑔𝑖(x

*)⊤d+ 𝑔𝑖(x
*) ≥ 0, if 𝑔𝑖(x

*) ≥ 0,

∇𝑔𝑖(x
*)⊤d+ 𝑔𝑖(x

*) + 𝜆𝑖 ≥ 0, if 𝑔𝑖(x
*) ≤ 0,

(2.13)

where d ∈ R𝑛 is the descent direction, and 𝜆𝑖 ∈ R+ is an inequality relaxation variable.
Similarly, we replace the MI approximations of equalities with their local linear approxi-
mators, but always include relaxation variables regardless of the level of infeasibility of the
constraints, as shown in (2.14).

ℎ𝑗(x) = 0 →

{︃
∇ℎ𝑗(x

*)⊤d+ ℎ𝑗(x
*) + 𝜇𝑗 ≥ 0,

∇ℎ𝑗(x
*)⊤d+ ℎ𝑗(x

*) ≤ 𝜇𝑗 ,
(2.14)

where 𝜇𝑗 ∈ R+ is an equality relaxation variable. This relaxation is for two reasons. The first
is that, in presence of equalities, the local PGD step may be infeasible due to conflicting
equality constraints. The second is that each PGD step will involve solving a quadratic
program, which can only be solved to given numerical precision. This precision, while low,
is non-zero.

Thus we introduce a constraint tightness tolerance parameter 𝜑, and say that an in-
equality 𝑔𝑖(x) ≥ 0 is feasible at x* if 𝑔𝑖(x

*) ≥ −𝜑. If all inequality constraints are
feasible to tolerance, relaxation variables 𝜆 are only required on the inequalities where
0 ≥ 𝑔𝑖(x

*) ≥ −𝜑, 𝑖 ∈ 𝐼, by the condition in (2.13). In that case, we perform a simple
gradient descent step. This involves solving the quadratic optimization problem in (2.15),
where 𝛾 is the infeasibility penalty coefficient, 𝛼 is the step size within a 0-1 normalized
x hypercube, 𝑟 is the step size decay rate, 𝑡 is the current PGD iteration and 𝑇 is the

44

maximum number of iterations.

min
x,d,𝜆,𝜇

∇𝑓(x*)⊤d+ 𝛾(||𝜆||22 + ||𝜇||22)

s.t. x = x* + d,⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒ d

x− x

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

2

≤ 𝛼exp
(︁−rt

T

)︁
,{︂

∇𝑔𝑖(x
*)⊤d+ 𝑔𝑖(x

*) ≥ 0, if 𝑔𝑖(x
*) ≥ 0

∇𝑔𝑖(x
*)⊤d+ 𝑔𝑖(x

*) + 𝜆𝑖 ≥ 0, if − 𝜑 ≤ 𝑔𝑖(x
*) ≤ 0

}︂
, ∀𝑖 ∈ 𝐼,{︂

∇ℎ𝑗(x
*)⊤d+ ℎ𝑗(x

*) + 𝜇𝑗 ≥ 0,
∇ℎ𝑗(x

*)⊤d+ ℎ𝑗(x
*) ≤ 𝜇𝑗 ,

}︂
, ∀𝑗 ∈ 𝐽,

Ax ≥ b, Cx = d,

𝑥𝑘 ∈ [𝑥𝑘, 𝑥𝑘], ∀𝑘 ∈ [𝑛]{︂
𝜆𝑖 = 0, if 𝑔𝑖(x

*) ≥ 0
𝜆𝑖 ≥ 0, if 𝑔𝑖(x

*) ≤ 0

}︂
, ∀𝑖 ∈ 𝐼,

𝜇𝑖 ∈ R+, 𝑗 ∈ 𝐽.

(2.15)

We exponentially decrease the allowed step size d as defined in (2.15), to aid convergence
and break cycles that may result.

If the current solution x* is infeasible beyond tolerance to any constraints, we take a
projection-and-descent step. This modifies the objective and first two constraints in (2.15)
by removing the step size constraint on d, and augmenting the objective function with a
projection distance penalty with 𝛽 as a parameter, as shown in (2.16):

min
x,d,𝜆,𝜇

∇𝑓(x*)⊤d+ 𝛽

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒ d

x− x

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

2

+ 𝛾(||𝜆||22 + ||𝜇||22)

s.t. x = x* + d,

...

(2.16)

This quadratic optimization problem approximates the closest feasible projection of x onto
the feasible space of nonlinear constraints.

The gradient and projected gradient steps defined above require knowing the maximum
range on all variables, x − x. If this range is not provided for variable 𝑥𝑘, then we assume
𝑥𝑘 − 𝑥𝑘 = max(x) − min(x). The convergence of the PGD is much stronger with user-
provided bounds however. We repeat the above PGD steps on new incumbent solutions
until the final two solutions are feasible to all constraints, and the improvement in original
objective function 𝑓(x) is less than absolute tolerance 𝜖.

The PGD algorithm introduces many parameters, whose default values are defined in
Table 2.2. While this adds additional complexity to the solution procedure, the descent
procedure is intuitive to tune, and the current implementation warns the user in case pa-
rameters require examination. In addition, the parameters are applied to 0-1 normalized
quantities over the x hypercube wherever possible. For all examples in this chapter, the

45

default PGD parameters from Table 2.2 apply unless stated otherwise.

Parameter Description Value
𝛾 Infeasibility penalty 106

𝛽 Step penalty 104

𝛼 Step size 10−3

𝑟 Decay rate 2
𝑇 Maximum iterations 100
𝜖 Absolute tolerance 10−4

𝜑 Tightness tolerance 10−8

Table 2.2: Parameters for PGD repair procedure.

2.5 Demonstrative example

Consider the following modified mixed-integer nonlinear optimization problem from Duran
and Grossmann [34]. For demonstrative purposes, the original nonlinear objective has been
replaced with a linear objective, and variables y have been concatenated to x for consistency
of notation.

min 𝑓(x) = 10𝑥1 − 17𝑥3 − 5𝑥4 + 6𝑥5 + 8𝑥6

s.t. 𝑔1(x) = 0.8log(x2 + 1) + 0.96log(x1 − x2 + 1)− 0.8x3 ≥ 0,

𝑔2(x) = log(x2 + 1) + 1.2log(x1 − x2 + 1)− x3 − 2x6 + 2 ≥ 0,

𝑥1 − 𝑥2 ≥ 0, 2𝑥4 − 𝑥2 ≥ 0,

2𝑥5 − 𝑥1 + 𝑥2 ≥ 0, 1− 𝑥4 − 𝑥5 ≥ 0,

0 ≤ 𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 2, 0 ≤ 𝑥3 ≤ 1,

𝑥4, 𝑥5, 𝑥6 ∈ {0, 1}3.

(2.17)

We will focus on the nonlinear inequalities 𝑔1(x) ≥ 0 and 𝑔2(x) ≥ 0 as we implement
the method step by step.

2.5.1 Standard form problem

Most global optimization problems are compatible with the standard form in Section 2.4.1
by construction. We demonstrate this by partitioning the original problem (2.17) below.

46

min 𝑓(x) = 10𝑥1 − 17𝑥3 − 5𝑥4 + 6𝑥5 + 8𝑥6 Objective

s.t. 𝑔1(x) = 0.8log(x2 + 1) + 0.96log(x1 − x2 + 1)− 0.8x3 ≥ 0, Nonlinear

𝑔2(x) = log(x2 + 1) + 1.2log(x1 − x2 + 1)− x3 − 2x6 + 2 ≥ 0, constraints

𝑥1 − 𝑥2 ≥ 0, 2𝑥4 − 𝑥2 ≥ 0, Linear

2𝑥5 − 𝑥1 + 𝑥2 ≥ 0, 1− 𝑥4 − 𝑥5 ≥ 0, constraints

0 ≤ 𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 2, 0 ≤ 𝑥3 ≤ 1, Variables

𝑥4, 𝑥5, 𝑥6 ∈ {0, 1}3. and bounds

We pass the linear constraints, variables and bounds directly to the MIO model, and
confirm that all variables in nonlinear constraints, in this case 𝑥1, 𝑥2, 𝑥3 and 𝑥6, are bounded.
Note the presence of binary 𝑥4, 𝑥5 and 𝑥6 in the problem as well.

2.5.2 Sampling and evaluation of nonlinear constraints

Next we generate samples over the nonlinear constraints using the procedure in Sec-
tion 2.4.2. Note that 𝑔1(x) ≥ 0 and 𝑔2(x) ≥ 0 have 3 and 4 active variables, so samples
are generated in R3 and R4 respectively. The resulting samples over 𝑔1(x) ≥ 0 and their
feasibilities are shown in Figure 2-4. Note that the samples span the whole x hypercube,
but that there are certain concentrations of points, thanks to the 𝑘NN sampling procedure,
that approximate the constraint boundary. This improves the ability of the approximating
OCT-H to be both globally and locally accurate.

Figure 2-4: The distribution of data for constraint 𝑔1(x) ≥ 0, generated by sampling proce-
dures defined in Section 2.4.2.

47

2.5.3 Decision tree training

We train two OCT-Hs to classify the feasible space of constraints 𝑔1(x) ≥ 0 and 𝑔2(x) ≥
0. For demonstrative purposes, the trees were limited to a maximum depth of 3, as opposed
to the standard depth of 5 used in OCT-HaGOn as defined in Table 2.1. The approximating
OCT-H for 𝑔1(x) ≥ 0 and the accuracy of its predictions are presented in Figure 2-5.
Notably, the OCT-H approximator achieves a high degree of accuracy (97%) throughout
dom(x) with only two feasible leaves.

(a) OCT-H over constraint 𝑔1(x) ≥ 0 has two feasible and two infeasible leaves,
and a depth of 3.

(b) OCT-H approximation is 97% accurate over 554 samples.

Figure 2-5: The approximating OCT-H achieves a high degree of accuracy, capturing both
the global and local behavior of the constraint 𝑔1(x) ≥ 0.

48

2.5.4 MI approximation

We pose the trees in a MIO-compatible form. As a bookkeeping note, auxiliary variables
are introduced with two indices, the first indicating the constraint index, and the second
indicating the numerical index of the leaf of the approximating OCT-H. This is consistent
with the formulation in Section 2.4.4.

[1, 0, 0] · y1,7 ≥ 1.542𝑧1,7,

[1, 0, 0] · y1,4 ≤ 1.542𝑧1,4,

[−0.6636, 0, 0.7467] · y1,4 ≤ 0.03956𝑧1,4,

[−0.6657, 0.4771, 0.3709] · y1,4 ≤ 0.1039𝑧1,4,

y1,4 + y1,7 = [𝑥1, 𝑥2, 𝑥3], 𝑧1,4 + 𝑧1,7 = 1,

[0, 0, 0]𝑧1,4 ≤ y1,4 ≤ [2, 2, 1]𝑧1,4,

[0, 0, 0]𝑧1,7 ≤ y1,7 ≤ [2, 2, 1]𝑧1,7,

𝑧1,4, 𝑧1,7 ∈ {0, 1}2.
(2.18)

Figure 2-6: 𝑔1(x) ≥ 0 is approximated via 6 continuous and 2 binary auxiliary variables,
and 6 linear constraints.

[−0.7025, 0.6884, 0.1103, 0.194] · y2,3 ≤ 0.6397𝑧2,3,

[−0.0563, 0, 0, 0.6068] · y2,3 ≤ 0.5222𝑧2,3,

[−0.7025, 0.6884, 0.1103, 0.194] · y2,5 ≤ 0.6397𝑧2,5,

[−0.0563, 0, 0, 0.6068] · y2,5 ≥ 0.5222𝑧2,5,

[0, 0, 1, 0] · y2,5 ≤ 0.54𝑧2,5,

y2,3 + y2,5 = [𝑥1, 𝑥2, 𝑥3, 𝑥6], 𝑧2,3 + 𝑧2,5 = 1,

[0, 0, 0, 0]𝑧2,3 ≤ y2,3 ≤ [2, 2, 1, 1]𝑧2,3,

[0, 0, 0, 0]𝑧2,5 ≤ y2,5 ≤ [2, 2, 1, 1]𝑧2,5,

𝑧2,3, 𝑧2,5 ∈ {0, 1}2.
(2.19)

Figure 2-7: 𝑔2(x) ≥ 0 is approximated via 8 continuous and 2 binary auxiliary variables,
and 7 linear constraints.

Figure 2-6 shows the approximating tree for constraint 𝑔1(x) ≥ 0, as well as its disjunctive
representation as defined by (2.8). Since the constraint has three active variables [𝑥1, 𝑥2, 𝑥3],
and the tree has two feasible leaves with node indices 4 and 7, the disjunctive representation
requires the definition of 6 auxiliary continuous variables y1,4 ∈ R3 and y1,7 ∈ R3, and two

49

binary variables 𝑧1,4 and 𝑧1,7. The number of linear constraints required is 6, which is equal
to the sum of the depths of each feasible leaf, plus 2 additional constraints defining the
disjunctions.

We approximate 𝑔2(x) ≥ 0 in Figure 2-7, with four active variables [𝑥1, 𝑥2, 𝑥3, 𝑥6], using
the same approach.

2.5.5 Solution of MIO approximation

As described Section 2.4.5, once the intractable constraints 𝑔1(x) ≥ 0 and 𝑔2(x) ≥ 0
are replaced with their tractable disjunctive approximations (2.18) and (2.19), the problem
turns into a MILO that is tractable using commercial solvers. We solve the problem via
CPLEX, and obtain a near-feasible, near-optimal solution with the objective value of -7.685
in Table 2-8a.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑓(x)

MIO 0.375 0.375 0.379 1.0 0.0 0.0 -7.685
PGD-repaired 0.699 0.699 0.530 1.0 0.0 0.0 -7.021

(a) The optimal solutions to demonstrative problem, pre- and post-PGD repair.

(b) The progress of the PGD method on the demonstrative example, plotted with respect to 𝑥1,
𝑥2 and 𝑥3 on the surface of 𝑔1(x) ≥ 0.

Figure 2-8: The MIO solution to the demonstrative example is successfully repaired to be
feasible and locally optimal by the PGD method.

50

2.5.6 Solution checking and repair

We check whether the approximate solution x* is feasible to the original optimization
problem (2.17) by evaluating the two nonlinear constraints. Since constraint 𝑔1(x) ≥ 0 is
violated, we initiate the PGD repair procedure from Section 2.4.6. To do so, OCT-HaGOn
replaces the MIO approximations of intractable constraints with the auto-differentiated gra-
dients of the constraints at x*, and takes a local step to close the feasibility gap while
descending along the objective. This is done iteratively, evaluating the objective function
and nonlinear constraints at each step, until all constraints are feasible, and the change in
the objective value falls below an absolute tolerance (10−4). The path of the PGD algorithm
is shown in Figure 2-8b, on the surface of constraint 𝑔1(x) ≥ 0, which divides the feasible
space of x in two. Note that this surface is unknown by the method, so it is remarkable that
it projects towards it with remarkable accuracy in its first step, and then moves along the
surface in a series of descent steps.

For this problem, the absolute tolerance of 10−4 was too small to converge definitively, so
the PGD algorithm terminates at its maximum of 100 iterations, with the optimal objective
value of 𝑓(x*) = −7.021 and the optimal solution in Table 2-8a.

2.6 Computational experiments on benchmarks

We apply OCT-HaGOn to a number of optimization problems from the literature, and
benchmark it against other global optimizers. The software implementation of OCT-HaGOn
can be found via the link in Appendix A.1. For the full list of optimizers used and their
capabilities, please refer to Appendix A.2. We lead this section with a caveat. Since our
approach is approximate, different random restarts of the solution procedure may yield
different optima. However, experience implementing the method suggests that the method
is consistent in finding the same optimum in most cases, and that random restarts reliably
mitigate issues resulting from finding near-optimal solutions.

We first apply our method to five small benchmark problems from MINLPLib [21], and
compare our results to those of BARON [82], a popular and effective commercial mixed
integer nonlinear program (MINLP) solver. The types and numbers of constraints in the
benchmarks are listed in Table 2.3. The results are shown in Table 2.4.

OCT-HaGOn is able to find the global optima for all five small benchmarks, matching the
BARON solutions. OCT-HaGOn takes significantly longer to solve the small benchmarks
than BARON. This is expected, since these problems have explicit constraints that only
contain mathematical primitives BARON supports. Tree training time makes up the vast
majority of the solution times for the small benchmarks; the MIO and PGD solution steps
are efficient, taking less that 5% of the total time for each benchmark. Within the context
of using optimization in design, where the optimization would be run many times to obtain
a number of solutions on the Pareto frontier, OCT-HaGOn is competitive and even faster
than BARON, since the MIO and PGD steps are solved in a small fraction of the time it
takes for the BARON solver to solve a single instance of each MINLP.

We proceed by considering a set of six larger benchmarks from MINLPLib [21], as shown
in Table 2.5. We also address the optimization problems using three commercially available
solvers, IPOPT, CONOPT and BARON. Given the increased difficulty of these larger bench-

51

Problem
Name

Continuous
Variables

Integer
Variables

Linear
Constraints

Nonlinear
Inequalities

Nonlinear
Equalities

Nonlinear
Objective

minlp 3 1 4 2 0 Y
pool1 7 0 2 4 0 N
nlp1 2 0 0 1 0 N
nlp2 3 0 0 0 3 N
nlp3 10 0 3 1 3 Y

Table 2.3: The five small nonlinear benchmarks from MINLPLib have a combination of
nonlinear inequalities, equalities and objective.

Problem name Objective Time (s) Solution
BARON OCT-HaGOn BARON OCT-HaGOn BARON OCT-HaGOn

minlp 6.0098 6.0098 0.120 29.9 [0,1,0,1.3,0,1] [0,1,0,1.3,0,1]

pool1 23.0 23.0 0.082 3.90
[4.0, 3.0, 1.0, 4.0,
0.0 2.12, 0.0]

[4.0, 3.0, 1.0, 4.0,
0.0 6.63, 0.0]

nlp1 -6.667 -6.667 0.106 0.461 [6, 0.667] [6, 0.667]
nlp2 201.16 201.16 0.092 2.75 [6.29, 3.82, 201.16] [6.29, 3.82, 201.16]
nlp3 -1161.34 -1161.34 1.265 17.7 [...] [...]

Table 2.4: Solutions to the small benchmarks using OCT-HaGOn and BARON.

Problem
name

Continuous
Variables

Integer
Variables

Linear
Constraints

Nonlinear
Inequalities

Nonlinear
Equalities

Nonlinear
Objective

himmel16 19 0 1 15 6 N
kall_circles_c6b 18 0 54 21 1 N

pointpack08 17 0 41 28 0 N
flay05m 23 40 61 5 0 N
fo9 111 72 326 18 0 N

o9_ar4_1 109 72 418 18 0 N

Table 2.5: The six larger benchmarks from MINLPLib. Note that the objective functions
are linear in x, and that nonlinearities are instead embedded in the constraints.

Problem name Objective Time (s) GO
GO OCT-HaGOn BK Global OCT-HaGOn

himmel16 -0.6798 −0.8660* -0.8660 0.055 109.575 CONOPT
kall_circles_c6b 2.8104 2.1583* 1.9736 0.355 38.503 IPOPT

pointpack08 -0.2574 -0.2500 -0.2679 13.483 91.805 IPOPT
flay05m 64.498 64.499 64.498 0.212 9.515 CONOPT
fo9 23.464 23.464 23.464 959.090 29.534 BARON

o9_ar4_1 236.138 236.138 236.138 2283.281 1255.598 BARON

Table 2.6: Solutions to the larger benchmarks using commercial global optimizers (GOs)
and OCT-HaGOn, against best known (BK) solutions.

52

marks, we allow OCT-HaGOn to use trees with maximum depth of 8, and generate double
the number of samples per constraint compared to the small benchmarks.

The results are shown in Table 2.6, compared with the best known solutions as doc-
umented in MINLPLib. OCT-HaGOn finds the best known global optima for 4 out of 6
instances, and high performing solutions otherwise. Some modifications were required for
a subset of the problems to be able to apply our method. The problems marked with an
asterisk required the following changes to the algorithm:

� The himmel16 test case contains a number of variables in nonlinear constraints that
are unbounded. Using our little knowledge of the problem, we were able to make it
compatible with our method by imposing bounds on all variables, x ∈ [−1, 1]19.

� The kall_circles_c6b example required increasing the step penalty and equality
penalty to 108, to damp the PGD projection rate in order to avoid a conservative local
optimum.

While these results are promising in showing that the method can scale to larger prob-
lems, they point to some practical considerations. The results show weak correlation between
solution time and size of the problems; this is because the number of variables and com-
plexity of nonlinearities in the approximated constraints tend to drive tree training time
and thus total solution time. Additionally, as the problem size increases, it is not obvious
whether tree training or MIO steps drive computational time, especially in the presence of
integer variables. For the himmel16 example, tree training takes 104 seconds of the 110
second total time, whereas for the o9_ar4_1 benchmark, optimization time dominates, with
training only taking 3 seconds out of nearly 21 minutes of total time. And while fo9 and
o9_ar4_1 are of similar sizes and have similar constraints (both contain nonlinearities with
inverses), they have dramatically different solution times.

2.7 Real world examples

In addition to the benchmarks, we test our method on two aerospace problems of varying
complexity. We first solve a benchmark from the engineering literature, to show that the
method can address real-world problems. We then apply OCT-HaGOn to a satellite on-orbit
servicing problem that cannot be addressed using other global optimizers.

2.7.1 Speed reducer problem

The speed reducer problem is a nonlinear optimization problem posed in [41]. The problem
aims to design a gearbox for an aircraft engine, subject to 11 specifications, geometry,
structural and manufacturability constraints, in addition to variable bounds over x ∈ R7.
We apply our method to the problem as written in Appendix A.3 in standard form.

In Table 2.7, we compare different solutions to the speed reducer problem. Both OCT-
HaGOn and IPOPT beat the best known optimum from [58]. In addition, OCT-HaGOn
allows us to achieve all constraints with zero error after 4 iterations of the PGD algorithm

53

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 Objective Time (s) Error
BK 3.5 0.7 17 7.3 7.7153 3.3503 5.2867 2994.472 476 10−6

OCT-HaGOn 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.355 32.6 0
IPOPT 3.5 0.7 17.0* 7.3 7.7153 3.3502 5.2867 2994.355 4.2 10−7

Table 2.7: Both OCT-HaGOn and IPOPT beat the best known (BK) solution of the speed
reducer problem. In addition, OCT-HaGOn has 0 error on constraint satisfaction.

as shown in Appendix A.3, while the other two methods have small but nonzero error
tolerances.

IPOPT was able to solve this particular nonlinear program (NLP) in 4.2 seconds, sig-
nificantly faster than OCT-HaGOn, which took 32.6 seconds. However, this required a
relaxation of the integrality of 𝑥3. For this particular problem, this was not concerning since
𝑥3 was lower bounded by its optimal value of 17. However, IPOPT cannot in general be
used to solve MINLPs.

On a practical note, we would like to note the different levels of complexity in the
OCT-H approximations of the underlying nonlinear constraints. Some constraints, while
they look quite complex, have low-complexity tree approximators. Consider the following
constraint 𝑔5(x) ≥ 0 and its associated OCT-H approximator. The OCT-H model has a

𝑔5(x) = 110𝑥36 −
[︁(︁

745
𝑥4

𝑥2𝑥3

)︁2
+ 16.9× 106

]︁0.5
≥ 0

Figure 2-9: The constraint 𝑔5(x) ≥ 0 is accurately approximated by a single separating
hyperplane over dom(x).

single hyperplane that is able to approximate the function in the relevant dom(x) with
perfect accuracy over 613 samples, as shown in Figure 2-9. Within the bounded dom(x),
the nonlinear constraint is thus simplified to a linear constraint.

However, not all constraints are straightforward to represent via unions of polyhedra.
Consider the objective function, which is a 5th order polynomial (2.20). In this particular
case, the objective is represented by an ORT-H with 19 leaves, each defining a unique
feasible polyhedron over x. A truncated version of the tree, with four leaves visible, is
shown in Figure 2-10. The 1−R2 error of the approximation is 1.4×10−5 over 532 samples.

54

𝑓(x) = 0.7854𝑥1𝑥
2
2(3.3333𝑥

2
3 + 14.9334𝑥3 − 43.0934)

− 1.5079𝑥1(𝑥
2
6 + 𝑥27) + 7.477(𝑥36 + 𝑥37) + 0.7854(𝑥4𝑥

2
6 + 𝑥5𝑥

2
7).

(2.20)

Figure 2-10: The objective function 𝑓(x) is approximated via an ORT-H with 19 leaves (4
leaves shown) and 1− R2 error of 1.4× 10−5.

2.7.2 Satellite OOS problem

We test our method on the previously-unsolved optimization problem of satellite on-orbit
servicing (OOS) scheduling. Satellite OOS is a future technology that seeks to improve the
lifetime of existing and next-generation satellites by allowing autonomous servicer spacecraft
to perform repairs or refuels in orbit [61]. OOS is a difficult scheduling problem that acts on
a highly nonlinear dynamical system. It is a good problem to address via our method since,
in its full MINLP form, the problem is a nonconvex combinatorial optimization problem with
nonlinear equality constraints. In addition, due to the 11 orders of magnitude difference in
the ranges of decision variables, it is numerically challenging. Before this thesis, it was
addressed only via enumeration [61]. Please refer to Appendix A.4 for more details on the
full list of constraints; a succinct summary of the problem follows.

The dynamical problem is the orbital mechanics of moving a servicer satellite between
client satellites in the same orbital plane. Orbital transfers involve using on-board thrusters
to get the servicer into a different orbital altitude than the client satellite, called the phasing

55

orbit, in order to reduce the true anomaly (angular phase difference in radians) between the
servicer and the client. The servicer then propels itself back onto the client’s orbit to meet
the client satellite at the right time and position in space, while obeying conservation of
energy, momentum and mass. The scheduling problem involves both choosing the optimal
order in which to serve each client satellite (discrete decisions), as well as choosing the
optimal phasing orbits (continuous decisions).

In this section, we consider a simple example of OOS. We schedule a single servicer satel-
lite to refuel 7 client satellites in orbit, traveling between clients using on-board propulsors.
Each client requires different amounts of fuel, and we constrain the servicer to fulfill its
mission in 0.35 years, with the objective being to minimize the wet mass (the dry mass and
fuel) of the servicer. The problem parameters are in Table 2.8.

Parameter Value Units
Servicer dry mass 500 kg

Propulsor specific impulse 230 (Ns)/kg
Number of client satellites 7 -
Client satellite altitude 780 km

Servicer satellite altitude range [760,800] km
Maximum service time 0.35 years

Table 2.8: OOS problem parameters.

The fuel requirements shown in the Figure 2-11 were randomly generated and reflect a
possible distribution of fuel needs for client satellites that are part of the same constellation
and were launched concurrently at a previous point in time.

Figure 2-11: Client satellites require different amounts of fuel, which affects the optimal
schedule for servicing.

56

In addressing the OOS problem, we make the following realistic simplifying assumptions,
although our method does extend to more general cases. The servicer satellite is delivered by
an external rocket to the first client, and uses its own propulsor to use Hohmann transfers
between the subsequent client satellites. Thrusting and refueling steps take a negligible
amount of time relative to maneuver steps. All client satellites are in the same orbital
plane, at the same altitude, and are evenly spaced around the orbit.

The initial problem of servicing 𝑛𝑠 = 7 clients has 141 variables, of which 𝑛2
𝑠 = 49

binary variables denote the servicing order. The continuous decision variables in nonlinear
constraints are bounded from above and below to be compatible with OCT-HaGOn as
defined in Section 2.4.1. There are 41 linear constraints in the model representing a subset
of the system dynamics. On top of the linear constraints, we have 10(𝑛𝑠−1) = 60 nonlinear
constraints, all of them equalities. The constraints are presented in detail in Appendix A.4.

We solve the problem in two ways. First we solve it via OCT-HaGOn. Since we know
the constraints of this problem explicitly, we use the ORT-H approximation method as
described in Section 2.4.4, separating nonlinearities from affine components of constraints
for improved accuracy, and training a tree for each set of recurrent constraints. The resulting
MIO problem has 999 continuous and 349 binary variables, and 3650 linear inequalities and
286 linear equalities.

Other global optimizers such as CONOPT, IPOPT and BARON cannot be used as
benchmarks for OCT-HaGOn on this particular problem. Since OOS is a mixed-integer
problem, gradient-based optimizers such as CONOPT or IPOPT are rendered ineffective,
and BARON does not support the nonlinearities present in orbital dynamics. Instead, we
successfully discretize out a subset of the nonlinearities in constraints by restricting the
possible transfer orbits into 1 km bins. This reduces the complexity of the OOS problem to
a MI-bilinear problem, which we are able to solve via Gurobi’s MI-bilinear optimizer [42].
The MI-bilinear representation has 394 variables, of which 289 variables are binary. 36 of the
60 nonlinear constraints are turned into bilinear equalities, while the rest are transformed
into linear constraints. The solution of the discretized problem is globally optimal, but
guaranteed to be worse than the global optimum of the full MINLP formulation, since
a discrete set of orbit altitudes is more restrictive than a continuous set. However, the
solution is granular enough to be a good benchmark for OCT-HaGOn.

The results are presented in Table 2.9, and shown graphically in Figure 2-12. Firstly,
we look for two important effects, demonstrated well by the MI-bilinear solution and easily
seen in Figure 2-12. The first is that it is best to refuel satellites with the largest refuel
requirements first, since a lighter servicer requires less fuel to transfer between subsequent
clients. The second is that it is better to spend more time transferring in the beginning of
the mission than the end, since transfers spend less fuel when the servicer is lighter. This
is exhibited by a general downward trend in both maneuver times and fuel costs in the
MI-bilinear solution.

While OCT-HaGOn properly captures the optimal satellite schedule, it isn’t able to find
the optimal set of phasing orbits. This is easily seen by observing the flat profile of maneuver
times in the OCT-HaGOn solution in Figure 2-12a, which is suboptimal (by < 0.1% total
fuel) to the decreasing profile seen in the discretized solution in Figure 2-12b. In addition,
due to the presence of many nonlinear equalities, the PGD method was not able to reduce the
infeasibility and optimality gaps, getting stuck in a local optimum. With a maximum tree

57

(a) The OCT-HaGOn solution.

(b) The MI-bilinear solution.

Figure 2-12: While it captures the orbital dynamics well, OCT-HaGOn is not able to sched-
ule the phasing orbits as well as the MI-bilinear formulation.

58

Metric Values
OCT-HaGOn solution

Wet mass (kg) 1725.9
Total maneuver time (years) 0.350

Satellite order 4 3 2 1 7 6 5
Refuel mass (kg) 196.0 159.2 189.5 177.4 132.9 169.6 158.2

Transfer orbit altitude (km) 765.8 765.8 765.8 765.8 765.8 767.6
Maneuver fuel (kg) 9.60 8.74 7.73 6.79 6.08 4.17

Maneuver time (days) 20.7 20.7 20.7 20.7 20.7 24.1
Orbital revolutions 297.0 297.0 297.0 297.0 297.0 345.3

Discretized MI-bilinear solution
Wet mass (kg) 1724.4

Total maneuver time (years) 0.350
Satellite order 4 3 2 1 7 6 5

Refuel mass (kg) 196.0 159.2 189.5 177.4 132.9 169.6 158.2
Transfer orbit altitude (km) 768.0 768.0 766.0 765.0 765.0 762.0

Maneuver fuel (kg) 8.46 7.53 7.51 6.77 5.80 5.51
Maneuver time (days) 24.9 24.9 21.4 19.9 19.9 16.6
Orbital revolutions 357.1 357.1 306.1 285.7 285.7 238.1

Table 2.9: The discretized and OCT-HaGOn formulations come up with the same optimal
satellite schedule, although the discretized solution performs 0.1% better.

depth of 6, the solution has a maximum relative error of 3.5×10−3 and a mean relative error
of 2.5× 10−4 on all nonlinear constraints. While this is sufficiently accurate for conceptual
design purposes, greater accuracy and a more robust repair procedure are desired.

In terms of solution time, OCT-HaGOn took 14.2 seconds when solved using a personal
computer with an 8-core Intel i7 processor. That includes all sampling, evaluation, training
and optimization steps. In comparison, the MI-bilinear solution took 17.7 seconds, just for
the optimization step. This is in addition to the two days spent by an experienced engineer,
reformulating the problem to be compatible with existing efficient optimization formulations.

Despite the suboptimal solution of OCT-HaGOn to the OOS problem, we argue that it
is a strong demonstration of the capabilities and promise of the method, especially consider-
ing the problem complexity. Notably, OCT-HaGOn successfully finds the optimal satellite
servicing schedule, which is arguably the most important decision in the problem. This is
despite the fact that the problem is ill-conditioned, with 11 orders of magnitude difference
in decision variable values, and has 60 nonlinear equality constraints coupling a majority
of the decision variables. In addition, discretized reformulations of such complex global
optimization problems may not exist in general. Even if they do, they may be intractable
due to the combinatorial nature of such reformulations. To the best of our knowledge, this
makes OCT-HaGOn the only global optimization tool in the literature that can address this
problem directly.

59

2.8 Discussion

In this section, we discuss the results and limitations, and propose areas for future work.

2.8.1 Limitations

The proposed method shows promise in solving a variety of global optimization problems,
but it is a work in progress. Here we detail some of the limitations of the method as
implemented in this thesis; we list these in order from the most to the least significant, in
the author’s opinion.

While the OOS example demonstrates that the method can address problems with a
high degree of nonlinear coupling between decision variables, individual nonlinear constraints
involving a large number of active variables will pose challenges in both the OCT-H training
time, as well as the accuracy of the tree approximations. Tree accuracy directly affects the
quality of the approximate optima. Separability, as described in Section 2.4.4, can partially
mitigate this problem, by allowing many nonlinear constraints to be decomposed into linear
components and better approximated via a series of ORT-Hs.

In addition, we have yet to rigorously test how solution time and quality scale with the
number of variables and nonlinear constraints, and the sparsity of the nonlinear constraints.
Given that the performance of OCT-HaGOn is formulation-dependent, there is much to be
gained, both in terms of solution time and quality, through formulations that premeditate
where OCT-H approximations need to be used, and use them judiciously. We expect OCT-
HaGOn to be particularly effective when a majority of the constraints in the optimization
problem are linear or convex and therefore efficient, and the constraint learning approach is
implemented on the otherwise intractable constraints, with reasonably tight decision variable
bounds.

As noted in Section 2.6, the proposed method has no guarantees of global optimality
since it is approximate. Thus, different iterations of the method generate high-performing
solutions that are locally optimal, but do not have guarantees of global optimality such
as those provided by BARON. In addition, while the method is agnostic about whether
constraints are explicit or inexplicit, the method has so far been tested on explicit constraints
only. This is because of the inavailability of numerical benchmarks with black box functions,
due to their incompatibility with other existing global optimizers.

An implicit assumption of the method is that the intractable constraints are quick to
evaluate; if this assumption is not true, then the implementation may need to change to
accommodate computational requirements. Additionally, the PGD method requires that
the constraint functions are auto-differentiable. While this is a modest assumption, it is
possible that constraint evaluations do not allow for AD. This could be overcome by finding
gradients approximately, e.g. via finite differencing, but this is not currently implemented.

With these limitations outlined, we continue by proposing future work to improve the
method.

2.8.2 Decision tree training

The majority of the solution time of OCT-HaGOn is taken by the tree training step.

60

While the computational cost of training is linear with the number of constraints, the results
on benchmarks in Section 2.6 show that training time can vary dramatically depending on
the complexity of the underlying constraints. In this section, we discuss several ways to
manage computational time.

The first potential source of training time reduction comes from tuning the base tree
parameters described in Table 2.1 and implemented in IAI. To do so, we can reduce the
complexity of the trees, by reducing the maximum depth and increasing the minbucket
parameters. Otherwise we can modify the number of random restarts in tree training. Since
the local search method used in generating OCT-Hs and ORT-Hs is locally optimal, we
can reduce training time by changing the number of random restarts of candidate trees, as
well as the number of random hyperplane restarts. However, both methods have a clear
negative tradeoff with respect to the accuracy of the OCT-H approximations. In general, we
find that using 10 random tree restarts and 5 hyperplane restarts, as described by the base
tree parameters in Table 2.1, we are able to generate trees that are sufficiently accurate for
decision making while being efficient enough to use in a real-time optimization setting.

A potentially large source of training time reduction is from recognizing the common form
of constraints in a problem. If a nonlinear constraint 𝑔(u𝑖) ≥ 0 is repeated 𝑘 times with
different variables u𝑖 ⊂ x, 𝑖 ∈ [𝑘], the constraints can be approximated jointly. Specifically,
we can train a single OCT-H to approximate the constraint over the domain ∪𝑘

𝑖=1dom(ui).
We then express the 𝑘 constraints as 𝑘 repetitions of the disjunctive representation of the
tree with different variables u𝑖. In this paper, many benchmarks in Section 2.6 exhibit this
kind of repeating behavior, but we treat the constraints as black boxes and do not take
advantage of potential speed-ups. For the OOS problem however, we use our knowledge of
the constraints to train the trees jointly.

There is also potential in exploiting the noise-free nature of data over explicit constraints
to speed up the training process. Currently, training time scales exponentially in the number
of features of the data (i.e. number of variables in each constraint), making tree approxi-
mations of constraints dense in x slow. One could speed up the training process by trying
a greedy approach, building trees with hyperplanes in a locally optimal manner similar to
CART [17], instead of a globally optimal manner via local search heuristics [11]. Another
approach could devise specific local search heuristics that sample constraints and train trees
in a dynamic manner, in order to speed up training and also reduce the approximation error.

There are also improvements that could be made considering computing architecture.
Since individual constraints are learned separately, the training process could be done in
parallel, making the best of use of available computational resources. The trees can be
efficiently stored once trained, allowing the same trees to be used in different instances of
the same optimization problem. This avoids the need to retrain trees, and also avoids having
to store the samples required to train the trees, saving on memory. We have developed such
methods for development purposes.

2.8.3 Complexity of the MIO approximation

As aforementioned, the complexity of solving the MIO approximations of global opti-
mization problems is modest, since the scale of the MIO is small compared to the abilities
of commercial solvers such as Gurobi or CPLEX. However, it is important to note how the

61

complexity of the MIO can scale depending on the number of nonlinear constraints and the
depth of the approximating trees.

We first consider the number of auxiliary variables required to pose the MIO approx-
imation. The number of variables used to approximate a nonlinear constraint is a linear
function of the number of disjunctive polyhedra describing the feasible space of x, as well
as the number of decision variables in the constraint. More explicitly, the total number of
binary variables required to approximate the problem is linear with respect to the number
of leaves in the decision trees, and equivalent to

|𝐿𝑓 |+
∑︁
𝑖∈𝐼

|𝐿𝑖,1|+
∑︁
𝑗∈𝐽

|𝐿𝑗 |,

where 𝐿𝑓 , 𝐿𝑖,1 and 𝐿𝑗 are the set of feasible leaves in the objective-, inequality- and equality-
approximating trees respectively. In addition, we introduce a number of continuous auxiliary
variables. The number of auxiliary variables is equivalent to:

1 + |𝐿𝑓 |(𝑝𝑓 + 1) +
∑︁
𝑖∈𝐼

(︁
|𝐿𝑖,1|𝑝𝑖

)︁
+
∑︁
𝑗∈𝐽

(︁
|𝐿𝑗 |𝑝𝑗

)︁
,

where 𝑝𝑖 is the number of variables in the 𝑖th constraint. The maximum number of leaves
of a tree is 2𝑑, so in the worst case, the number of auxiliary binary variables in the problem
is 𝒪(2𝑑(1 + |𝐼| + |𝐽 |)), and the number of auxiliary continuous variables is 𝒪(2𝑑(1 + |𝐼| +
|𝐽 |)dim(x)), equivalent to the number of binary variables augmented by the dimension of x.
In practice however, this worst case is not seen, as the trees are pruned during the training
process, and approximated intractable constraints are sparse in x.

The number of disjunctive constraints is more complicated, since the trees are not guar-
anteed to be of uniform depth, and we do not know a priori the fraction of feasible leaves
for a classification tree. However, if we assume that each tree has a depth 𝑑𝑖, we get the fol-
lowing worst case number of disjunctive constraints, not including the univariate bounding
constraints for the continuous auxiliary variables:(︁

2𝑑𝑓 × (𝑑𝑓 + 1)
)︁
+ 3 +

∑︁
𝑖∈𝐼

(︁
(2𝑑𝑖 − 1)× 𝑑𝑖

)︁
+
∑︁
𝑗∈𝐽

(︁
(2𝑑𝑗 − 1)× 𝑑𝑗

)︁
+ 2|𝐼|+ 4|𝐽 |.

The above implies that the number of disjunctive constraints in the MIO is 𝒪(2𝑑𝑑(1+ |𝐼|+
|𝐽 |)), where 𝑑 is the maximum depth of all approximating trees. This shows the super-
exponential impact of tree depth on MIO complexity, where the need for greater accuracy
may result in large computational cost. However, for the small to medium scale instances
we have considered in this chapter, this is an acceptable tradeoff.

Additionally, the number of variables grows linearly with number of constraints, which
could result in the solution time of OCT-HaGOn being exponential in the worst-case. Unlike
linear or convex optimization problems, where the average solution time can be sublinear
with the number of constraints, OCT-HaGOn is expected to have on average super-linear
solution time with respect to number of constraints due to the combinatorial nature of
the approximations. We have yet to observe problems that exhibit such exponential-time
behavior, likely because of the sparsity of the approximating constraints, and also due to

62

the locally-idealness of the formulation. However, tree complexity needs to be investigated
as OCT-H approximations are applied to large scale problems.

2.8.4 Extending to MI-convex formulations

The OCT-HaGOn approach allows us to generate efficient MIO representations of non-
linear constraints that are not efficiently optimizable, i.e. not linear or convex. It opens
up the possibility to include these approximations in more general MI-convex formulations,
where the efficient convex nonlinear constraints are preserved, either via direct insertion or
via outer approximation, while the intractable constraints are approximated via OCT-Hs.
This will significantly improve both the speed and accuracy of our method.

2.8.5 Comparing the big-M free and big-M disjunctive formulations

While OCT-HaGOn implements the locally ideal, big-M free disjunctive representations
of decision trees as described in Section 2.4.4, it is possible that a big-M representation is
faster to solve via commercial solvers, due to the large number of auxiliary variables added
in the big-M free approach. It remains to be tested whether it is more efficient to solve the
locally ideal but much larger MILO resulting from the big-M free approach, or whether it is
more efficient to solve the smaller but non-ideal MILO resulting from the big-M approach.
While we have no definitive proof of the relative performance of the two approaches, the
author’s intuition would point towards a tradeoff based on problem size; it is likely that
a big-M approach will outperform the big-M free approach when addressing larger global
optimization problems with more nonlinear constraints.

2.8.6 Improved random restarts

As aforementioned, since the constraint learning approach is approximate, random restarts
may be required gain confidence in the quality of the locally optimal solutions. Currently,
random restarts for OCT-HaGOn involve retraining trees over all nonlinear constraints, and
replacing them simultaneously. A better method would be to train an ensemble of trees on
each constraint, and permute the tree approximations to generate a set of MI approxima-
tions of the problem. The solution of each permutation would provide a near-optimal seed
for a new PGD sequence. This would reduce the computational burden of random restarts
and result in higher-performing populations of solutions, giving increased confidence in the
method.

2.8.7 Optimization over data-driven constraints

There are global optimization contexts where constraints are informed by data, without
having access to the underlying models. Some examples are simulation data in the design
of engineered systems, outcomes of past experiments, or anthropogenic data such as clinical
data and consumer preferences. In theory, OCT-HaGOn is able to learn constraints from
arbitrary data and integrate these models in an optimization setting. However, we have
yet to perform experiments to confirm the efficacy of OCT-HaGOn in real-world decision
making using data-driven constraints. Such an embedding of data into optimization via
constraint learning has important implications for a variety of fields, such as healthcare and
operations research.

63

2.8.8 Integration of other MIO-compatible ML models

While this thesis focuses on the use of OCT-Hs and ORT-Hs for constraint learning,
there are other ML models that have optimization-compatible representations. Maragno et
al. [65] explore the possibility of using linear models, decision trees and their variants, and
multi-layer perceptrons to learn constraints and objectives from data. OCT-HaGOn could
easily be extended to accommodate such other MIO-representable ML models.

2.9 Conclusion

In this chapter, we have proposed an intuitive new method for solving global optimization
problems leveraging interpretable ML and efficient MIO. Our method approximates explicit
and inexplicit nonlinear constraints in global optimization problems using OCT-Hs and
ORT-Hs, using the natural disjunctive representation of decision trees. We demonstrate,
both theoretically and practically, that the disjunctive MIO approximations are efficiently
solvable using modern solvers, and result in near-optimal and near-feasible solutions to
global optimization problems. We then improve our solutions using gradient-based methods
to obtain feasible and high-performing solutions. We demonstrate that our global optimizer
OCT-HaGOn is competitive with other state-of-the-art methods in solving a number of
benchmark and real-world problems. The Julia implementation of OCT-HaGOn as described
in this thesis is available via the link in Appendix A.1.

The method we present is more than a new tool in the global optimization literature.
Tree-based optimization stands out among existing global optimization tools because it can
handle constraints that are explicit and inexplicit, and even learn constraints from arbitrary
data. To the author’s best knowledge, it is the most general global optimization method in
the literature, since it has no requirements on the mathematical primitives of constraints or
variables. Our method only requires a bounded decision variable domain over the nonlinear
constraints. This has important implications to a number of fields that can benefit from
optimization, but have yet to do so due to lack of efficient mathematical formulations. Some
of the relevant aerospace applications are discussed in Section 4.2.

64

Chapter 3

Optimal Engineering Design

Decisions Under Uncertainty

Aerospace design exists in a niche of design problems where “failure is not an option"1. This
is remarkable since aerospace concepts are rife with uncertainty about technological capa-
bilities, environmental factors, manufacturing quality, and the future state of markets and
regulatory agencies. In addition, given certain technologies and configurations, aerospace
concepts continue to approach the limits of the Second Law of Thermodynamics, challenging
designers to squeeze ever-diminishing performance out of each unit of energy. These two
factors broadly explain the high risk of aerospace programs, and the dramatic growth in
product development time observed in Section 1.1.

Optimization under uncertainty seeks to provide designs that are robust to realizations of
uncertainty in the real world. It has been identified as an area of opportunity for aerospace
design in multiple review papers [95, 93], and can play a pivotal role in reducing the high
risk of aerospace programs by explicitly considering uncertainty in the design process. We
detail some of its potential benefits below.

The aerospace industry has relied heavily on legacy design methods and prior experience
when faced with risky design propositions. Legacy tools have been predominant even in
the design of novel configurations where experience in and understanding of the design
tradespaces is lacking. Since new tools for design under uncertainty will better evaluate risk
than legacy tools, there will be increased confidence in and uptake of new design tools.

Design under uncertainty will allow for a better understanding of the tradeoff between
risk and performance. Optimization tools that rigorously consider uncertainty will yield
designs that are less conservative than traditional designs while meeting the same reliability
requirements. These tools will also better evaluate the viability of new concepts and con-
figurations relative to legacy methods, since they will capture the effects of technological
uncertainty.

Finally, design under uncertainty will enable guarantees of constraint satisfaction under
uncertainty. Designs will be protected against uncertainties in manufacturing quality, en-
vironmental factors, technology level, markets, and even requirements. Robust designs can
thus avoid costly redesigns, which may be required as parameters in these domains evolve

1Quoting Gene Kranz, the mission director of Apollo 13.

65

during the course of an aerospace program.
In economics, the idea that risk is related to profit is well understood and leveraged. In

aerospace engineering however, we often forget that risk aversity necessarily results in lower
performance. Considering that conceptual design hedges against program risk, the tractable
RO frameworks proposed in this thesis will give aerospace engineers the ability to rigorously
trade-off robustness to uncertainty with the performance penalties that result.

3.1 Approaches to design optimization under uncertainty

Faced with the challenge of finding designs that can handle uncertainty, the aerospace field
has developed a number of methods to design under uncertainty. Oftentimes, aerospace engi-
neers will implementmargins in the design process to account for uncertainties in parameters
that a design’s feasibility may be sensitive to, such as material properties or maximum lift
coefficient. Another traditional method of adding robustness is through multi-mission de-
sign [94], which ensures that the design is able to handle multiple kinds of missions in the
presence of no uncertainty. This is a type of finitely adaptive optimization geared to ensure
performance in off-nominal operations.

These legacy methods have several weaknesses. They provide no quantitative measures
of robustness or reliability [95]. They rely on the expertise of an experienced engineer to
guide the design process, without explicit knowledge of the tradeoff between robustness
and optimality [93]. This is a dangerous proposition especially in the conceptual design
phase of new configurations, since prior information and expertise are not available. In
these scenarios, it is especially important to implement physics-based tools to explore the
design space [94]. Furthermore, legacy methods are often too conservative, ruling out po-
tentially beneficial technologies and configurations due to the inability to adequately trade
off performance and risk.

There are two rigorous approaches to solving design optimization problems under uncer-
tainty, which are stochastic optimization (SO) and RO, contrasted in Figure 3-1 and defined
below. Note that stochastic optimization is an overloaded term, and exists in at least two
contexts in the literature. The first is the solution of deterministic problems with stochastic
search space exploration. The second is the solution of design optimization problems with
stochastic parameters, which is the focus of this chapter.

SO pairs well with gradient-based approaches to solving nonlinear optimization problems
such as those defined in [37], [56] and [57]. These approaches implement an iterative process
where the objective function and constraints are evaluated over an initial design, and first-
and/or second-order information are used to converge the design towards a local optimum.
In this context, SO problems deal with uncertainty by including probability distributions
of the uncertain parameters in the iteration, and propagating the distributions through the
physics of a design problem to ensure constraint feasibility with certain probability. The
predominant goal of SO is to optimize some distributional characteristics, e.g. the mean as
in Figure 3-1, of the probability density function of the objective [26].

There have been recent developments in multi-mission aircraft design using SO. Liem et
al. [56] propose the use of optimally weighted objective functions over an aircraft’s opera-
tional design envelope for robust aircraft design. In following work, Liem et al. generate

66

Figure 3-1: SO and RO are methods for optimization under uncertainty that use different
definitions of uncertain inputs and produce different objective outcomes.

probability distributions of uncertain parameters from data and minimize the expectation
of an objective function over parameter distributions [57]. Although these stochastic meth-
ods demonstrate significant improvements over legacy design methods in terms of design
robustness, they do not address many of the aforementioned challenges of legacy design
methods in capturing the robustness-optimality tradeoff. The scope of the design problems
is narrow and limited to aerostructural optimization, and the number of uncertain param-
eters is low. The formulations assume the presence of data, limiting the effectiveness of
the methods in conceptual design. They have large computational costs that are somewhat
mitigated through surrogate modeling, but would be detrimental in the conceptual design
phase. Most importantly, they lack rigorous mathematical assessments of design feasibility
under uncertain parameters.

In contrast to SO, RO can only be applied to mathematical programs that have a robust
counterpart, such as linear, quadratic, semidefinite and geometric programs. RO takes a
different approach than SO in both the form of uncertain inputs and the objective functions.
RO produces designs that are immune to constraint violations as long as parameter values
come from within a defined uncertainty set. The objective of RO is to optimize the worst-
case objective outcome of a design for a given set over the uncertain parameters. As such, RO
avoids the need to sample and propagate probability distributions, and turns SO problems
into deterministic problems that are efficiently solved.

3.1.1 Comparison of robust and stochastic optimization for design

Both RO and SO have relative advantages in implementation. Here we reiterate arguments
in [74] that the formulation of conceptual engineering design problems under uncertainty
as RO problems has advantages over SO formulations (a more mathematical programming
centric comparison is made in [8]).

67

Generality and tractability

In the context of engineering, we claim that an optimization method is general when it
can be used to solve a range of problems of interest. On the other hand, tractability de-
scribes whether or not the problems are solved to a satisfactory optimum within reasonable
computational time. Optimization under uncertainty is a difficult task that puts these two
desirable subjective traits at odds with each other.

SO has the advantage of generality. SO methods are easily applicable to black box models
or input-output systems. They require little knowledge, if any, about the constraints in the
system of interest. RO methods are less general, since they require the design objective and
constraints to be explicit and cast in a form that has a worst-case counterpart. Thus models
for RO have to be transparent, and RO cannot be applied to black box models without
significant prior data manipulation and fitting at a minimum. A mitigating factor is that
many classes of conceptual engineering design problems can be cast or approximated in a
form that is compatible with robust optimization.

On the other hand, RO is more tractable than SO due to the difference in method of
uncertainty propagation. As mentioned previously, SO methods involve the propagation of
probability densities throughout a model to determine their effects on constraint feasibility
and the objective function. This requires the integration of the product of probability
distributions with potential outcomes, and since the integration of continuous functions
is difficult, this is often achieved through a combination of high-dimensional quadrature
and discretizations of the uncertainty into possible scenarios. This propagation method
results in a combinatorial explosion of possible outcomes which need to be evaluated to
determine constraint satisfaction and the distribution of the objective. As a result, few
problems can be addressed purely through SO (e.g., recourse problems [49, 43]; the energy
planning problem [76]; and certain aircraft design problems [56, 57]), and even these are
limited by combinatorics and costly system evaluations. Furthermore, they require problem-
specific approximations, so that generality is compromised. Robust versions of tractable
optimization problems are not guaranteed to be tractable, but in practice the aforementioned
classes of optimization problems have tractable robust formulations [8]. In RO, there are
no separate optimization and evaluation loops by construction, and thus RO problems can
be solved to optimality many orders of magnitude faster than SO problems of the same
form [8].

Conceptual design optimization values both generality and tractability, the former be-
cause engineers would like to apply methods for optimization under uncertainty without
significant mathematical groundwork, and the latter because fast solution times are critical
to reduce program risk early on in the design process when more aspects of the design are
fluid. From this perspective, the relative intractability of SO-based approaches makes them
unreliable for conceptual design, since significant time is needed both to develop problem-
specific tractable formulations, and to find satisfactory optima. Furthermore, many engi-
neering design problems such as aircraft design are approximable by optimization forms that
have tractable robust counterparts, making RO better suited to conceptual design.

Use of data

SO problems generally require complete knowledge of the probability distributions of

68

parameters. RO requires only ‘modest assumptions about distributions, such as a known
mean and bounded support’ [23]. Since RO does not require as much information about
uncertain parameters as SO does, it can better address conceptual design problems where
there is a lack of experience, or sparse and noisy data [8]. It is arguable that RO leaves a
lot on the table by not taking advantage of distributional information, however there is a
growing body of research on distributionally robust optimization [12] which seeks to leverage
existing data.

Stochasticity and probabilistic guarantees

Although RO problems solve problems with uncertainty, RO formulations result in determin-
istic2 solutions that are immune to all possible realizations of parameters in an uncertainty
set [8]. There is extensive literature on RO methods that offer differing levels of conserva-
tiveness [13] depending on the kind of uncertainty set considered, that are guaranteed to be
feasible over the uncertainty set of interest.

SO formulations provide no probabilistic guarantees since the optimum depends on real-
izations of random variables [84]. This is not satisfactory from an engineering perspective,
since optimization runs over the same parameters may result in different solutions. Fur-
thermore, designs can be sensitive to issues in sampling schemes over potentially unknown
probability distributions. In the context of engineering design, the determinism and proba-
bilistic guarantees of RO make it superior to SO.

It is important to highlight that, although both RO and SO seek to address the problem
of optimization under uncertainty, they solve fundamentally different problems. In an ideal
world where we have a problem that is tractable and globally optimal for both methods, the
two different approaches would result in different solutions.

3.1.2 Geometric and signomial programming for engineering design un-

der uncertainty

Formulations exist for solving the robust geometric program (RGP) with parametric
uncertainty [80]. The creation of a robust signomial program (RSP) framework to capture
uncertainty in engineering design, and specifically aircraft design, will allow us to have more
confidence in the results of the conceptual design phase, reduce program risk, and increase
overall system performance.

3.2 Contributions

In this chapter, we make the following contributions to the literature:

1. We propose addressing engineering design problems with parametric uncertainty using
RSPs.

2Determinism in this case refers to the outcomes of free variables in the optimization model. Different
instances of a deterministic design problem with the same parameters will result in the same solution.

69

2. Based on the framework developed by Saab and Öztürk [80, 74], we extend the RGP
framework to SPs, which we solve as a sequence of RGPs.

3. We demonstrate and quantify the benefits of RO in ensuring design feasibility and
performance using Monte Carlo (MC) simulations of the uncertain parameters. We
contrast these with the feasibility and performance of the nominal and margin-driven
designs.

4. We explore the potential of RO in the multiobjective design setting.

5. We propose a new goal programming method for multiobjective optimization under
uncertainty using RO, that uses uncertainty set size as its figure of merit.

We now more specifically define the mathematical principles of robust optimization,
before detailing our RSP method.

3.3 Mathematical theory of robustness

Given an optimization problem under parametric uncertainty, we define the set of possible
realizations of uncertain vector of parameters u in the uncertainty set 𝒰 . This allows us to
define the problem under uncertainty below, with objective 𝑓0 and constraints 𝑓𝑖, 𝑖 ∈ [𝑛]
over design variables x and uncertain parameters u.

min 𝑓0(x)

s.t. 𝑓𝑖(x,u) ≤ 0, ∀u ∈ 𝒰 , 𝑖 ∈ [𝑛].

In the trivial case when 𝒰 has a single element, we recover the deterministic problem
where parameters u are fixed and certain. The problem of interest however has parametric
uncertainty over continuous variables, for which 𝒰 is a non-empty set with countably infinite
members. This general problem is infinite-dimensional, since it is possible to formulate an
infinite number of constraints with the countably infinite number of possible realizations of
u ∈ 𝒰 .

To circumvent this issue, we can define the following robust formulation of the uncertain
problem below.

min 𝑓0(x)

s.t. max
u∈𝒰

𝑓𝑖(x,u) ≤ 0, 𝑖 ∈ [𝑛].

This formulation hedges against the worst-case realization of the uncertainty in the defined
uncertainty set. The set is often described by a norm, which contains possible uncertain
outcomes from distributions with bounded support:

min 𝑓0(x)

s.t. max
‖u‖≤Γ

𝑓𝑖(x,u) ≤ 0, 𝑖 ∈ [𝑛], (3.1)

70

where Γ is defined by the user as a global uncertainty bound. The larger the Γ, the greater
the size of the uncertainty set that is protected against.

3.4 Robust signomial programming formulation

This section overviews the proposed RSP formulation. As a refresher of Section 3.3, robust
signomial programming assumes that parameter uncertainties are defined by an uncertainty
set, and solves a reformulated design problem to find the best solution, through the process
shown in Figure 3-2. As long as the original optimization problem is SP-compatible, a robust
formulation of the problem exists, making this method general to aerospace problems such
as those in [94, 54, 52]. We derive the intractable formulation of a RSP below.

Requirements
Configuration

SP compatible
models

Optimal
solution

Sensitivities

Distributional
information

Generate
uncertainty sets

Reformulate
constraints

Modeling
Determine

uncertainties

Model un-

certainties

Signomial
Programming

Robust
Signomial

Programming

Figure 3-2: A block diagram showing the difference between the design process using a SP
and a RSP.

To refresh the reader, SP in exponential form is as follows:

min 𝑓0 (x)

s.t.
∑︀𝐾𝑖

𝑘=1𝑒
aik

⊤x+𝑏𝑖𝑘 −
∑︀𝐺𝑖

𝑘=1𝑒
cik

⊤x+𝑑𝑖𝑘 ≤ 0, ∀𝑖 ∈ [𝑚],
(3.2)

where the constraints are represented as difference-of-posynomials in exponential form. Let
aik and cik be the ((𝑖− 1)×𝑚+ 𝑘)𝑡ℎ rows of the exponents matrices A and C respectively,
and 𝑏𝑖𝑘 and 𝑑𝑖𝑘 be the ((𝑖 − 1) × 𝑚 + 𝑘)𝑡ℎ elements of the coefficients vectors b and d
respectively.

The data (A, C, b, d) is assumed to be uncertain and living in an uncertainty set 𝒰 ,
where 𝒰 is parametrized affinely by a perturbation vector 𝜁:

𝒰 =
{︁
[A;C;b;d] =

[︀
A0;C0;b0 d0

]︀
+
∑︀𝐿

𝑙=1 𝜁𝑙
[︀
A𝑙;C𝑙;b𝑙;d𝑙

]︀}︁
(3.3)

where A0, C0, b0, and d0 are the nominal exponents and coefficients,
{︀
A𝑙
}︀𝐿
𝑙=1

,
{︀
C𝑙
}︀𝐿
𝑙=1

,{︀
b𝑙
}︀𝐿
𝑙=1

, and
{︀
d𝑙
}︀𝐿
𝑙=1

are the basic shifts of the exponents and coefficients, and 𝜁𝑙 is the 𝑙𝑡ℎ

71

component of 𝜁 belonging to a perturbation set 𝒵 ∈ R𝐿 such that

𝒵 =
{︀
𝜁 ∈ R𝐿 : ‖𝜁‖ ≤ Γ

}︀
. (3.4)

As aforementioned, our goal is a formulation that is immune to uncertainty in the data.
Accordingly, the robust counterpart of the uncertain SP in (3.2) is

min 𝑓0 (x)

s.t. max
𝜁∈𝒵

{︁∑︀𝐾𝑖
𝑘=1𝑒

aik(𝜁)
⊤x+𝑏𝑖𝑘(𝜁) −

∑︀𝐺𝑖
𝑘=1𝑒

cik(𝜁)
⊤x+𝑑𝑖𝑘(𝜁)

}︁
≤ 1, ∀𝑖 ∈ [𝑚].

(3.5)

The optimization problem in (3.5) is intractable using current solvers, therefore a heuris-
tic approach to solving a RSP approximately as a sequential RGP will be presented in the
following sections. As our approach is based on tractable robust geometric programming, a
brief review of the subject will follow based on [80].

3.4.1 Review of tractable robust geometric programming

This section presents a brief review of the approximation of a RGP as a tractable optimiza-
tion problem as discussed in [80], using principles of robust linear optimization reviewed in
Appendix B.2. The robust counterpart of an uncertain geometric program is

min 𝑓0 (x)

s.t. max
𝜁∈𝒵

{︁∑︀𝐾𝑖
𝑘=1𝑒

aik(𝜁)
⊤x+𝑏𝑖𝑘(𝜁)

}︁
≤ 1, ∀𝑖 ∈ [𝑚],

(3.6)

which is Co-NP hard in its natural posynomial form [22]. We review the three approximate
formulations of a RGP.

Simple conservative formulation

One way to approach the intractability in (3.6) is to replace the max-of-sum by the sum-of-
max, leading to the following formulation.

min 𝑓0 (x)

s.t.
∑︀𝐾𝑖

𝑘=1max
𝜁∈𝒵

{︁
𝑒aik(𝜁)

⊤x+𝑏𝑖𝑘(𝜁)
}︁
≤ 1, ∀𝑖 ∈ [𝑚]

(3.7)

Maximizing a monomial term is equivalent to maximizing an affine function, therefore (3.7)
is tractable.

Equivalent intermediate formulations

These formulations are equivalent to the formulation in (3.6), but with smaller, easier to
handle posynomial constraints. By the properties of inequalities, the posynomial 𝑃 in
posynomial inequality 𝑀 ≥ 𝑃 can be divided into an equivalent set of smaller posynomials
based on the dependence between its monomial terms. Figure 3-3 shows how a constraint
can be represented as an equivalent set of smaller posynomial constraints.

72

𝑃 =𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6+ + + + +

S1 S2 S3

≤ 1

≤ 𝑡1
≤ 𝑡2
≤ 𝑡3

⇐⇒𝑚𝑎𝑥{𝑃} ≤ 1

𝑡1 + 𝑡2 + 𝑡3

𝑚𝑎𝑥{𝑆1} = 𝑚𝑎𝑥{𝑀1 +𝑀3 +𝑀4}
𝑚𝑎𝑥{𝑆2} = 𝑚𝑎𝑥{𝑀2 +𝑀5}

𝑚𝑎𝑥{𝑆3} = 𝑚𝑎𝑥{𝑀6}

Figure 3-3: Partitioning of a large posynomial into smaller posynomials requires the addition
of auxiliary variables. 𝑆𝑖 are posynomials with independent sets of variables.

The posynomial constraints are categorized into three sets: large posynomials, two-
term posynomials and monomials, represented by 𝑆1, 𝑆2 and 𝑆3 respectively. Monomials
are tractable, and two-term posynomials can be well approximated using piecewise-linear
functions [47]; thus, we can use techniques for robust linear optimization to address both
monomials and two-term posynomials directly. We implement the following two tractable
approximations for large posynomials.

In the Linearized Perturbations approximation, which can be used when exponents are
known and certain, robust large posynomial constraints are approximated as signomial con-
straints. The exponential perturbations in each posynomial are linearized using a modified
least squares method, and then the posynomial is robustified using techniques from robust
linear programming. The resulting set of constraints is SP compatible, therefore, a RGP is
approximated as a SP.

The Best Pairs approximation allows for uncertain coefficients and exponents. In this
case, the large posynomials can’t be approximated as SP-compatible constraints, and further
simplification is needed. This formulation aims to maximize each pair of monomials in
each posynomial, while finding the best combination of monomials that gives the least
conservative solution. [80] provides a descent algorithm to find locally optimal combinations
of the monomials, and shows how the uncertain GP can be approximated as a GP for
polyhedral uncertainty, and a conic optimization problem for ellipsoidal uncertainty with
uncertain exponents. For a detailed description of the above formulations, please refer to
[80]. An algorithm for solving a RSP based on the above formulations is provided in the
next section.

3.4.2 Solution of robust signomial programs

This section presents heuristic algorithms to solve a RSP based on tractable RGP formula-
tions in Section 3.4.1

73

Solve deter-
ministic SP

Make local GP
approximation

Formulate
local RGP

Solve local RGP

Δobjective ≤ 𝜖?

Solution x𝑛

x0

Choose
methodology

No, x𝑖+1 = x𝑖.

Yes.

Figure 3-4: A block diagram showing the steps of solving a RSP.

General RSP Solver

A common algorithm to solve a SP involves sequentially solving local GP approximations.
Similarly, our approach to solve a RSP is based on solving a sequence of local RGP ap-
proximations. In Figure 3-4, we provide a step-by-step algorithm. In this heuristic, a good
initial guess will lead to faster convergence and possibly a better solution. The deterministic
solution of the uncertain SP is in general a good candidate x0, but naive guesses also suffice.

For comparisons between methods ahead, we write the algorithm explicitly as follows:

1. Choose an initial guess x0.

2. Repeat:

(a) Find the local GP approximation of the SP at x𝑖.

(b) Find the RGP formulation of the GP.

(c) Solve the RGP to obtain x𝑖+1.

(d) If x𝑖+1 ≈ x𝑖: break.

Any of the methodologies in Section 3.4.1 can be used to formulate the local RGP
approximation. However, depending on the RGP formulation chosen to solve the RSP, the
formulation and solution blocks in Figure 3-4 are adjusted.

Best Pairs RSP solver

If the Best Pairs methodology is exploited, then the above algorithm changes so that each
iteration solves the local RGP approximation and chooses the best permutation for each
large posynomial. The modified algorithm is the following:

1. Choose an initial guess x0.

2. Repeat:

74

(a) Find the local GP approximation of the SP at x𝑖.

(b) For each large posynomial constraint, select the new permutation 𝜑 such that 𝜑
minimizes the robust large constraint evaluated at x𝑖.

(c) Solve the approximate tractable counterparts of the local GP in (3.6), and let
x𝑖+1 be the solution.

(d) If x𝑖+1 ≈ x𝑖: break.

Linearized Perturbations RSP solver

On the other hand, if the Linearized Perturbations formulation is used, then we can avoid
solving a SP at each iteration by first approximating the original SP constraints locally, and
in the same loop approximating the robustified possibly-signomial constraints locally, thus
solving a GP at each iteration instead of a SP. The algorithm is the following:

1. Choose an initial guess x0.

2. Repeat:

(a) Find the local GP approximation of the SP at x𝑖.

(b) Robustify the constraints of the local GP approximation using the Linearized
Perturbations methodology.

(c) Find the local GP approximation of the resulting local SP at x𝑖.

(d) Solve the local GP approximation in step c to obtain x𝑖+1.

(e) If x𝑖+1 ≈ x𝑖: break.

3.5 Aerospace problem

We implement the RSP formulation above on an unmanned, gas-powered aircraft design
problem that is systematically developed in [72], with the ellipsoidal fuselage model borrowed
from [20]. We optimize a wing, fuselage, and engine system given a payload and range
requirement. The optimization model captures fundamental tradeoffs in aircraft design, and
was developed using GPkit, a Python package that provides abstractions for using GPs in
engineering design [19]. The nominal model has 175 variables and 153 constraints, a common
level of sparsity for GP and SP models. A short qualitative overview of the model follows;
for more detailed information, please refer to [20] and [72]. The uncertainties associated
with the parameters will be described in Section 3.6.

3.5.1 Flight profile

The flight profile model is borrowed from [94]. Within the model, the trajectory of the
aircraft is optimized over four steady flight segments, although we only model climb segments
and therefore the stored gravitational potential energy of the aircraft is not captured.

75

3.5.2 Atmosphere

The atmosphere model is taken from [88], and considers changes in density and dynamic
viscosity with altitude, for a standard atmosphere.

3.5.3 Aircraft

The aircraft is modeled as a wing, fuselage and engine system. The aircraft is assumed to be
in steady flight, so that the thrust power is equal to the sum of the drag power and rate of
change of potential energy of the aircraft, and the lift is equal to the total weight, ignoring
the vertical component of thrust in climb. Its total weight is the sum of its components.
The aircraft has to be able to takeoff at specified minimum speed without stalling as well.
Aircraft component models are detailed below.

Wing

Lift is generated by the wing as a function of its geometry and free stream conditions. The
wing structure model is based on a beam model with a distributed lift load, and a point
mass in the center representing the fuselage. Wing fuel volume is modeled as a fraction of
the internal volume available in the wing. The weight of the wing is the sum of skin and spar
weights. Its drag is the sum of induced and profile drags, the latter of which is constrained
by a 3-term softmax-affine posynomial fit [44] of drag polars generated in XFOIL [27]. The
airfoil used was designed by Prof. Mark Drela of MIT and is a variant of those implemented
in [20].

Fuselage

The fuselage contains the fuel and payload internally, and the engine externally. It is assumed
to be ellipsoidal in shape, and its drag is estimated using a form factor. The fuselage is
assumed not to contain any structural members, and so its weight consists only of skin
weight.

Engine

The aircraft is powered by a naturally aspirated piston engine. It is subject to power lapse at
lower air densities at higher altitudes. Engine weight versus maximum sea level power, and
brake specific fuel consumption versus thrust and altitude are modeled using the posynomial
fits of engine performance data from [73].

Source of non-log-convexity: fuel volume

The signomial constraint in the optimization appears in the aircraft total fuel volume con-
straint, as shown in (3.8):

𝑉f ≤ 𝑉fwing
+ 𝑉ffuse . (3.8)

The signomial constraint makes the problem non-log-convex, which means that the solu-
tion methods detailed by Saab [80] need to be extended to accommodate this optimization
problem.

76

Table 3.1: Parameters and uncertainties (increasing order)

Parameters Description Value % Uncert. (3𝜎)
e span efficiency 0.92 3
𝜇 air viscosity (SL) 1.78× 10−5 kg/(ms) 4
𝜌 air density (SL) 1.23 kg/m3 5

𝐶𝐿,max stall lift coefficient 1.6 5
k fuselage form factor 1.17 10

𝐶𝑓,ref reference fuselage skin friction factor 0.455 10
𝜌p payload density 1.5 kg/m3 10
𝑁ult ultimate load factor 3.3 15
𝑉min takeoff speed 35 m/s 20
𝑊p payload weight 3000 N 20

𝑊coeff,strc wing structural weight coefficient 2× 10−5 1/m 20
𝑊coeff,surf wing surface weight coefficient 60 N/m2 20

3.6 Uncertainties and sets

As mentioned in Section 3.1.1, one of the advantages of RO over SO is the fact that it
only requires as inputs the uncertainty set size instead of complete probability distributions
over each parameter. In the context of this work, the set size is defined relatively in each
uncertain design parameter 𝑢𝑖 by 3𝜎𝑖, and globally by scalar parameter Γ. An illustration of
the relationship between 3𝜎’s and Γ is provided in Figure 3-5, and explained in Sections 3.6.1
and 3.6.2.

3.6.1 Design parameter uncertainties

The relative size of the uncertainty set in each uncertain variable is given by three times
the coefficient of variation (CV)3, as listed in Table 3.1. Since for the rest of this work all
standard deviations (𝜎) are normalized by the means of the parameters, we will use 3𝜎 to
represent 3CV.

In this case of a conceptual aircraft design with no prior data, the parameter uncer-
tainties reflect aerospace engineering intuition. The wing weight coefficients 𝑊coeff,strc and
𝑊coeff,surf , and the ultimate load factor 𝑁ult have large 3𝜎’s because the build quality of air-
craft components is often difficult to quantify with a large degree of certainty. The payload
weight and density (𝑊p and 𝜌p) have large uncertainties since the payload is often developed
concurrently with the aircraft. Parameters that engineers take to be physical constants (sea
level air viscosity and density, 𝜇 and 𝜌) and those that can be determined with a relatively
high degree of accuracy (𝑒) have relatively low deviations. Parameters that require testing
to determine (𝐶𝐿,max, 𝐶𝑓,ref , 𝑉min) have a level of uncertainty that reflects the expected
variance of empirical studies. However, note that these quantities are ultimately picked by
the designer using prior experience and data, and the level of conservativeness in the design

3The CV is defined as follows: CV = 𝜎
|𝜇| , where 𝜎 is the standard deviation and 𝜇 is the mean of the

parameter.

77

𝑢𝑖

𝑢𝑗
Γ = 1, 3𝜎𝑖 = 3𝜎𝑗 = 1

Γ = 0.5, 3𝜎𝑖 = 3𝜎𝑗 = 1

Γ = 1, 3𝜎𝑖 = 0.25, 3𝜎𝑗 = 0.75

(a) Example L∞ or box sets.

𝑢𝑖

𝑢𝑗

Γ = 1, 3𝜎𝑖 = 3𝜎𝑗 = 1

Γ = 0.5, 3𝜎𝑖 = 3𝜎𝑗 = 1

Γ = 1, 3𝜎𝑖 = 0.25, 3𝜎𝑗 = 0.75

(b) Example L2 or ellipsoidal sets.

Figure 3-5: Γ defines the overall size of norm uncertainty sets, while 3𝜎 defines the relative
size of the set in each uncertain parameter.

will be greatly affected by the chosen 3𝜎’s.

3.6.2 Uncertainty sets considered

The robust design problem is solved for box and ellipsoidal uncertainty sets, which are
defined by the L∞- and L2-norms, and bounded by varying the parameter Γ. Intuitively,
for both sets, Γ is a global measure of how much risk is being hedged against, and affects
all parameter uncertainties simultaneously. Γ = 0 implies that all of the parameters take
their nominal values with zero uncertainty, which we call the nominal problem, and larger
Γ protects against greater uncertainty. Γ is more rigorously defined in the context of robust
linear programming in Appendix B.2.

For box uncertainty, Γ scales the width of the L∞ hypercube as shown in Figure 3-5a,
whose dimensionality is the same as the number of uncertain parameters (12). More intu-
itively, Γ×3𝜎𝑖 defines the range of the possible values of uncertain parameter 𝑢𝑖, normalized
by the mean of 𝑢𝑖. It can be easy to assume that using margins and box uncertainty sets
will yield the same designs, but they fundamentally function differently. Firstly, the worst
case outcome in box uncertainty can come from the interior of the uncertainty set, instead
of the corner of the hypercube considered by margins. Furthermore, there is no guarantee
(and it is unlikely) that the chosen corner, i.e. particular allocation of margins, is the most
conservative point in the uncertainty set. It is even possible that the wrong sign of margin
is allocated for certain parameters, since SPs are nonlinear and local sensitivities cannot
be used reliably to intuit global behavior. Consider in this particular example the sea level
air density 𝜌. Higher air density is better for takeoff performance and naturally aspirated
engine performance, but results in higher drag, so it is difficult for a designer to determine
how to best allocate margin on 𝜌. Thus for the rest of this chapter the direction of margins
is determined using the local sensitivities of the nominal solution, which are obtained at no
extra computational cost in the solution of the terminal GP approximation of the SP. With
these considerations in mind, box uncertainty is expected to be strictly more conservative
and more appropriate than the use of margins in conceptual design, since (1) margins fail
to capture the level of conservativeness they signal, and (2) prior information (in this case
the nominal solution) is required to allocate margin effectively.

78

For ellipsoidal uncertainty, Γ is the maximum diameter of the Euclidian norm ball of
u as shown in Figure 3-5b, where 𝑢𝑖 is one-third the number of standard deviations of
perturbation of the 𝑖th parameter from its nominal value. Ellipsoidal uncertainty exploits
the fact that the joint probability of multiple uncertain parameters taking values in the tails
of their respective distributions is very low. So while it does not protect deterministically
for all outcomes of the uncertain parameters within 3𝜎, it is expected to protect against
uncertain outcomes less conservatively than the box uncertainty set, with little compromise
in the ability of the design to satisfy constraints.

3.7 Results

We implement our RSP algorithm on the aforementioned conceptual aircraft design problem.
Our implementation is written in Python, and is free and open source; it is available via the
link provided in Appendix B.1. Our objective function is total fuel consumption, which is
to be minimized given a payload and range requirement.

3.7.1 Mitigation of probability of failure

First, the optimization problem is solved in presence of no uncertainty. It is expected
that this aircraft has a high probability of failure due to its sensitivity to the outcomes of
uncertain parameters. Then, using the sign of sensitivities of the nominal solution, we assign
3𝜎 margins for each parameter and generate a design using margins. These two solutions
are compared with RO results for box and ellipsoidal uncertainty sets at Γ = 1, using the
Best Pairs robustification method. From here onward we refer to aircraft designed under
no uncertainty, under margins, under box uncertainty and under ellipsoidal uncertainty as
‘the nominal aircraft’, ‘the margin aircraft’, ‘the box aircraft’ and ‘the ellipsoidal aircraft’
respectively.

The design variables are then fixed for each solution, and the designs are simulated
for different realizations of the uncertain parameters. This allows for statistical analysis
of design performance, and an estimate of each design’s probability of constraint violation,
which we define as its probability of failure (PoF). In this MC scheme, the random variables
are simulated from independent and identically distributed 3𝜎-truncated Gaussians. We
simulate from the truncated Gaussian since this makes it possible to confirm mathematically
that for Γ = 1, all simulations of 3𝜎 uncertain parameters are deterministically feasible for
the box uncertainty set. The results are in Table 3.1. Designs for each solution for the rest
of the section are simulated with the same MC samples for consistency.

It is noteworthy in the PoF at the bottom of Table 3.2 that, for the nominal problem
(Γ = 0), only 12 percent of the MC evaluations result in feasible solutions. This means
that an aircraft designed for the average case would almost surely fail to satisfy the mission
requirements, even with equal likelihood of favorable versus unfavorable uncertain outcomes
from the symmetric truncated Gaussian. That being said, depending on the problem, it
may necessary to sacrifice performance to achieve a high degree (3𝜎) of reliability as in the
solution for Γ = 1. Furthermore, the margin aircraft, the box aircraft and the ellipsoidal
aircraft spend on average 53%, 55% and 39% more fuel respectively than the aircraft designed

79

Table 3.2: SP aircraft optimization results, for Γ = 1.

Free
variable

Description Units
No

Uncert.
Margins Box Ellipsoidal

𝐿/𝐷 mean lift-to-drag ratio - 45.0 35.4 36.1 38.4
𝐴𝑅 aspect ratio - 38.0 25.0 24.6 28.1
𝑅𝑒 Reynolds number - 8.44×105 1.21×106 1.35×106 1.21×106

𝑆 wing planform area m2 6.27 14.9 14.6 12.8
𝜏 airfoil thickness ratio - 0.175 0.197 0.198 0.192
𝑉 mean flight velocity m/s 41.7 34.6 35.4 36.2

𝑇flight time of flight hr 20.0 24.1 23.6 23.1
𝑊w wing weight N 1170 2080 2090 1940

𝑊w,strc wing structural weight N 792 1100 1130 1090
𝑊w,surf wing skin weight N 376 985 966 851
𝑊fuse fuselage weight N 151 192 177 168
𝑊e engine weight N 84.4 111 122 115

𝑉f,avail total fuel volume m3 0.0267 0.0458 0.0502 0.0459
𝑉f,fuse fuselage fuel volume m3 0.0134 0 0 0
𝑉f,wing wing fuel volume m3 0.0133 0.0680 0.0667 0.0468

sketches to scale

Metric Description Units
No

Uncert.
Margins Box Ellipsoidal

Objective fuel weight N 214 367 402 368
E[Objective] mean fuel weight N 207 316 320 287

𝜎[Objective]
std. dev. of fuel

weight
N 11 12 12 11

P[failure] probability of failure % 88 0 0 0

for the nominal case, but they also are robust to all uncertain outcomes in the 3𝜎 set for
the MC simulation.

Table 3.2 also indicates that margins are not a good method of allocating uncertainty.
The claim for the use of margins is that they protect against the worst case outcome of each
parameter, but the results show otherwise. Since the box design at Γ = 1 is strictly more
conservative (worse worst-case outcome) over the 3𝜎 hypercube than the margin design, we
see that a margin from the interior of the hypercube rather than its corner is more effective
in protecting against the worst case. Furthermore, there are no probabilistic guarantees
that the aircraft with margins would not fail one of the MC simulations. Given enough
samples, it is almost surely true that some MC simulations will violate feasibility for the
design with margins, whereas RO under box uncertainty guarantees deterministically that
the constraints are satisfied.

80

We also posited that the ellipsoidal aircraft, although it isn’t deterministically robust
to all 3𝜎 uncertainties, would be less conservative than the margin and box designs while
not significantly sacrificing PoF. This is confirmed since the ellipsoidal design fails none
of the random samples, and spends 9% and 10% less fuel on average than the margin
and box aircraft respectively. The significance of this cannot be understated: the use of
ellipsoidal uncertainty results in designs that have strictly better performance outcomes,
while protecting against a similar amount of risk as designs using margins or box uncertainty.

0.0 0.2 0.4 0.6 0.8 1.0
Uncertainty Set Scaling Factor

220

240

260

280

300

Co
st

 [T
ot

al
 fu

el
 w

ei
gh

t (
N)

]

margins, PoF
box, PoF
elliptical, PoF
margins, cost
box, cost
elliptical, cost

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 F
ai

lu
re

Figure 3-6: Simulated cost and PoF of the optimal margin, box, and ellipsoidal aircraft as a
function of Γ. The banded lines represent the mean and standard deviation of total fuel burn,

simulated with 100 MC samples of uncertain parameters.

An analysis on the range Γ = [0, 1] was performed to confirm that the trends from
Table 3.2 hold for all Γ. Figure 3-6 shows that PoF goes monotonically towards zero as Γ
increases for all three methods, where box uncertainty is more conservative than ellipsoidal
uncertainty over the whole Γ domain, with no such guarantees for margins.

In absolute terms, the nominal SP under zero uncertainty or with margins takes just
under 0.9 seconds to solve on a modern laptop computer using Mosek [2], an interior point
solver that is free for academic use; we refer the reader to [53] and [94] for more in-depth
SP solution time analyses. In Figure 3-7 we examine briefly in relative terms how the dif-
ferent RSP methodologies compare in terms of setup and run times. Since the setup time
of the nominal problem is minimal, we have normalized the results by the solution time of
the nominal problem. The bottom axis ranks the methods by their level of conservative-
ness, Best Pairs and Simple Conservative formulations being the least and most conservative
respectively, and where the ellipsoidal formulations are less conservative than the box for-
mulations. For this aircraft design problem, the preferred Best Pairs methodology with an
ellipsoidal uncertainty set is competitive in solution and setup times relative to other meth-
ods, while providing the least conservative solutions. Note that setup and solution times for
RSPs are highly problem-specific, so it is not possible to predict the time performance of
other RSP-compatible problems from these results. Time performance will vary depending

81

Best Pairs Linearized Perturbations Simple Conservative
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sc
al
ed

 S
et
up

 T
im

e

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Sc
al
ed

 S
ol
ve

 T
im

e

Box Uncertainty Set

Setup Time
Solve Time

Best Pairs Linearized Perturbations Simple Conservative
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sc
al
ed
 S
et
up

 T
im
e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Sc
al
ed
 S
ol
ve
 T
im
e

Elliptical Uncertainty Set

Setup Time
Solve Time

Figure 3-7: Robust aircraft optimization setup and solution times for different RSP
approximations, normalized by the nominal problem solution time, for Γ = 1.

on the number of inequality constraints, the degree of coupling between monomials in each
inequality, and the RGP approximation and uncertainty set used.

3.7.2 Effect of robustness on multiobjective performance

One of the benefits of convex and difference-of-convex optimization methods is the ability to
optimize for different objectives [94]. As a demonstration, we optimize the aircraft without
uncertainty for 6 different objectives, and show the non-dimensionalized figures of merit in
Table 3.3. Since the model is physics based, the model can even accommodate objectives
such as wing area which are often unintuitive and not considered. The resulting aircraft
differ significantly with respect to certain objectives, while being similar in may others.
As an example, takeoff weight for all aircraft are 0.87 to 1.22 times the baseline total fuel
solution, while engine weight varies from 0.88 to 3.62 times the baseline. These demonstrate
the importance of considering many objectives in design, and underline the power of SPs in
helping consider the multiobjective performance of engineered systems.

We demonstrate the benefits of RSPs in multiobjective optimization by considering un-
certainty while optimizing for the same objectives. We perform the optimization of the

82

Objective
Total
fuel

Total
cost

Takeoff
weight

1/(Cruise
L/D)

Engine
weight

Wing
area

Total fuel 1.00 1.00 1.00 1.00 1.00 1.00
Total cost 2.51 0.64 0.98 2.55 3.62 0.98

Takeoff weight 1.37 0.89 0.87 1.43 1.42 0.87
1/(Cruise L/D) 1.29 1.00 1.11 0.77 2.48 1.53
Engine weight 1.35 1.53 1.22 1.40 0.88 2.78
Wing area 1.37 0.89 0.87 1.43 1.43 0.87

Table 3.3: Non-dimensionalized variations in performance of aircraft optimized for different
objectives. Objective values are normalized by the total fuel solution.

aircraft with no uncertainty, and both box and ellipsoidal uncertainty (Γ = 1) for the ob-
jective functions in Table 3.3, and plot the results on radar plots. Radar plots are useful
because they allow engineers to visualize the performance of designs in many dimensions.
One way to envision the multiobjective performance of the aircraft is to consider the area
of the polygon defined by the aircraft’s performance as the figure of merit; the smaller the
better.

Figure 3-8 shows the effects of robustness on the different worst-case performance metrics
of the different aircraft. As expected, the box uncertainty set is strictly more conservative
than the ellipsoidal uncertainty set in the optimized objective. However, the tradeoffs in the
other objectives are less clear. Note that the radar plots show the worst-case performance
of the vehicles, although this analysis can also be performed for the mean performance of
the aircraft determined through MC simulation.

This multiobjective comparison underscores the sensitivity of different objectives to level
of robustness and by extension parameter uncertainty. For example, the engine weight of the
1/(Cruise L/D) solution is highly sensitive to level of robustness, whereas the engine weight
of the total (time and fuel) cost aircraft is insensitive. Therefore, we might want to consider
total cost to be our overall objective instead of 1/(Cruise L/D) if we are relatively averse to
risk in engine versus airframe design. Robustness can affect the efficacy of different choices
of objective function in ensuring multiobjective performance. Since RSPs can be solved
quickly and reliably over a variety of objective functions, they allow engineers to understand
these kinds of complex tradeoffs early on in the design process.

Based on these observations, we argue that there could be significant value left on the
table if uncertainty is not considered with sufficient mathematical rigor in early phases of the
design process. RSPs allow engineers to capture complex tradeoffs in nonlinear optimization
problems while considering uncertainty, resulting in less conservative solutions than solutions
that implement margins and other less mathematically rigorous methods for risk mitigation.
Thus RSPs improve significantly on the paradigms of design under uncertainty in use in the
aerospace industry today.

83

 Total fuel

Total costTakeoff weight

1/(Cruise L/D)

Engine weight Wing area

0.20.40.6

Total fuel nominal
elliptical
box

 Total fuel

Total costTakeoff weight

1/(Cruise L/D)

Engine weight Wing area

0.250.500.751.00

Total cost

 Total fuel

Total costTakeoff weight

1/(Cruise L/D)

Engine weight Wing area

0.250.500.751.00

Takeoff weight

 Total fuel

Total costTakeoff weight

1/(Cruise L/D)

Engine weight Wing area

0.250.500.751.00

1/(Cruise L/D)

 Total fuel

Total costTakeoff weight

1/(Cruise L/D)

Engine weight Wing area

0.20.40.60.8

Engine weight

 Total fuel

Total costTakeoff weight

1/(Cruise L/D)

Engine weight Wing area

0.20.40.6

Wing area

Figure 3-8: Radar plots of aircraft performance. The bolded titles are the optimized ob-
jectives for each plot, and the individual plots show the non-dimensionalized multiobjective
performance of the aircraft, designed under different uncertainty sets.

84

(a) Total fuel (b) Total cost

(c) Takeoff weight (d) 1/(Cruise L/D)

(e) Engine weight (f) Wing area

Figure 3-9: Sketches of the aircraft for radar plots in Figure 3-8. Drawn to scale for com-
parison.

85

Table 3.4: Results of original RO problem versus its goal programming counterpart in terms
of size of uncertainty set Γ, objective penalty 𝛿, and probability of failure. Both methods
use the Best Pairs formulation under ellipsoidal uncertainty. The designs obtained through
the two different methods match.

RO form Γ 𝛿 PoF Goal form 𝛿 Γ PoF
0.00 7.95× 10−5 0.88 7.95× 10−5 - -
0.10 0.0525 0.73 0.0525 0.10 0.73
0.20 0.108 0.59 0.108 0.20 0.59
0.30 0.168 0.40 0.168 0.30 0.39
0.40 0.231 0.25 0.231 0.40 0.25
0.50 0.298 0.10 0.298 0.50 0.10
0.60 0.370 0.06 0.370 0.60 0.07
0.70 0.447 0.03 0.447 0.70 0.03
0.80 0.519 0.01 0.519 0.80 0.01
0.90 0.618 0.00 0.618 0.90 0.00
1.00 0.714 0.00 0.714 1.00 0.00

3.7.3 Risk minimization problems

All of the previous multiobjective analyses have assumed that we have an understanding of
exactly the amount of uncertainty we are willing to tolerate. However, minimizing risk can
also be the objective of our model. This would suggest the following formulation:

max Γ

s.t. max
‖u‖≤Γ

𝑓𝑖(x,u) ≤ 0, 𝑖 ∈ [𝑛],

𝑓0(x) ≤ (1 + 𝛿)𝑓*
0 , 𝛿 ≥ 0,

(3.9)

where 𝑓*
0 is the optimum of the nominal problem and 𝛿 is a fractional penalty on the objective

that we are willing to sacrifice for robustness, which gives (1 + 𝛿)𝑓*
0 as the upper bound on

the objective value. Intuitively, this is a form of goal programming, where we specify the
exact maximum worst-case value of an objective we can tolerate with the goal of maximizing
the size of the uncertainty set we can handle.

The robust goal programming formulation in (3.9) is clearly not equivalent to the robust
optimization in (3.1), but should yield the same results if there is no optimality gap between
the methods. To show this, we use the worst-case objective values from the PoF study shown
in Figure 3-6 as the 𝛿 inputs to the goal programming model, and compare the results. The
results are presented in Table 3.4. Note that the two methods were evaluated MC runs using
the same 100 realizations of the uncertainty, for consistency in PoF results.

Firstly, note that there are no results reported for the goal program for zero uncertainty,
Γ = [0.00]. Since the feasible set of this problem is a point design, the signomial program
solution heuristic declares the problem infeasible after being unable to locate the singular
feasible region. However when we positively perturb the singular 𝛿, the goal program has a
non-empty feasible set and returns the same solution as the original RO method. Otherwise,

86

the Γ values found by the goal program match exactly with the original RO problem. We
confirm that both methods produce the same designs by examining the physical dimensions
of the aircraft, and through the probability of failure found through MC simulation in
Table 3.4. Note that there are small discrepancies in the PoF, notably in the values for
Γ = [0.3, 0.6]. This is possible because there are uncertain realizations that can fall in or
out of feasibility due to numerical precision. The interior point solvers used cannot make
computations exactly [70].

We can also expand this framework to perform multivariate goal programming, by chang-
ing (3.9) to include all objectives we are interested in:

𝑓0,𝑗(x) ≤ (1 + 𝛿𝑗)𝑓
*
0,𝑗 , 𝛿𝑗 ≥ 0, 𝑗 ∈ [𝑚]. (3.10)

The benefit of goal programming is that it allows us to explore multidisciplinary tradeoffs
without having to enumerate the design space along each objective direction. The term
multiobjective optimization is misleading because you can only optimize for one objective
at once. The design is going to be influenced by how engineers weigh different objectives, and
it is not obvious whether an objective should be a constraint instead. The most fundamental
choice that an engineer can make in design is what the objective function is, and it is often
the case that there are many potential objectives that are conflicting. But risk is ubiquitous
in engineering design problems, so goal programming allows risk to be used as a global design
variable against which all other objectives can be weighed.

3.8 Discussion

In this section, we discuss the current RSP implementation and results, and propose areas
for future work. There are a number of potential improvements to the RSP framework that
would be beneficial in the context of conceptual engineering design.

3.8.1 Constraint-wise robustification

In this study, we do not discriminate between the kinds of constraints violated. However, it
would be possible to rank the severity of constraint violations so as to penalize some (e.g.
structural safety) more heavily than others (maximum range). This would inject further
realism into design under uncertainty since some violations contribute to program risk more
significantly than others.

There are new developments in RO that allow for the derivation of probabilistic guar-
antees of constraint violation [6, 9]. One especially relevant result from Ben-Tal and Ne-
mirovski [6] is the proof that for a box-ellipsoidal uncertainty set 𝒰 = {a : ||a||∞ ≤ 1, ||a||2 ≤
𝜌}, the probability of constraint violation is given by

Pa(a
𝑇x > 𝑏) ≤ 𝑒𝜌

2/2 (3.11)

and is dimension independent. Since RGPs are a direct extension of robust linear programs
into geometric space, these guarantees also hold for RGPs and are locally correct for RSPs

87

as well. Thus we can integrate a constraint-wise robustification framework into our RSP
framework so that designers can tune robustness to individual constraint violations based on
probabilities of failure. This will help clarify the relationship between probability of failure
and uncertainty sets in conceptual design.

3.8.2 Sensitivities to parameter uncertainties

The solution of a GP comes with the value of the dual variables at negligible computa-
tional cost. The dual variables can be used to compute the optimal sensitivities, i.e. the
sensitivity of the optimal cost to changes in problem parameters, which are insightful in
conceptual design. While the dual variables of the final GP iteration of the RSP solution
can be used to compute the sensitivities to the means of uncertain parameters 𝜇, it would
be beneficial to replicate this post-processing step for the 3𝜎 uncertainties as well. While it
is not clear whether there is an analytical representation of these 𝜕𝑓*

0
𝜕(3𝜎𝑖)

s, it is at a minimum
possible to compute these using finite differencing. The sensitivities to 3𝜎s could inform en-
gineers about where to concentrate efforts in order to mitigate the sensitivity of the objective
function to uncertain parameters.

3.8.3 Implementation of RGPs and RSPs for novel uncertainty sets

Another potentially valuable extension to the proposed framework is the extension of
RGPs and RSPs to sets other than norm sets, with the purpose of restricting uncertain
outcomes further and thus reducing conservativeness. One example would be to take the
intersection of the L0-norm and L2-norm sets. This method can be used to set the total
size of the uncertainty set in a Euclidian sense, but then also to restrict the uncertainty to
a subset of the uncertain parameters. This also turns the problem into an mixed integer
robust optimization problem which poses interesting computational challenges.

3.8.4 RO for the evaluation of adaptable engineered systems

With respect to potential new applications, RO opens up the possibility to discover
and analyze with mathematical rigor the benefits of adaptable architectures in engineering
design versus more traditional point designs. Some examples of these are modular designs,
morphing designs, adaptively manufactured designs and aircraft families. It is likely that
these types of engineered robustness become more effective at reducing program risk in
presence of uncertainty, since they are more likely to deliver value under adverse stochastic
outcomes. RO would allow designers to more rigorously quantify the benefits of adaptable
systems.

3.9 Conclusion

This chapter has motivated the use of RSPs in conceptual engineering design, in lieu of the
mathematically non-rigorous methods for optimization under uncertainty widely used in the
aerospace industry today. We have developed a tractable RSP formulation in response to

88

a need to optimize over uncertain parameters, extending an existing tractable approximate
RGP framework to non-log-convex problems. This RSP formulation is a valuable contribu-
tion to the fields of robust optimization and difference-of-convex programming. The Python
implementation of RSPs used in this thesis is open-source and available via the link in
Appendix B.1.

RSPs have a wide variety of potential applications in engineering design. We demon-
strated using an unmanned aircraft design problem that the use of RSPs in conceptual
design will result in systems that are more robust to uncertainties in operational parame-
ters, such as payload mass and range, as well as uncertain environmental and manufacturing
parameters. Unlike legacy methods, this robustness has probabilistic guarantees, where sets
of size Γ = 1 protect against all realizations of 3𝜎 uncertainty for a given set of parameters.
Thus engineers can use robust signomial programming to trade off robustness and optimality
within engineered systems in a tractable and mathematically rigorous manner.

We compared aircraft designs under fixed parameters and margins with robust designs
over box and ellipsoidal uncertainty sets. We confirmed that the box design is strictly more
conservative than the margin design, by simulating both designs over the same uncertain
outcomes. This indicates that the traditional method of allocating margins by observing the
local sensitivities of the nominal solution is inadequate, since it does not represent the worst-
case outcomes of 3𝜎 uncertain parameters as claimed. Furthermore, we showed that the box
design has approximately the same expectation and standard deviation of performance as
the margin design, but provides probabilistic guarantees of feasibility unlike its counterpart.

We also confirmed that the ellipsoidal design is strictly less conservative than the margin
or box designs while protecting against the same parametric uncertainties. Since designs
found using RSPs under ellipsoidal uncertainty are less conservative than designs found
through traditional methods, RSPs have the potential to reduce the program risk and in-
crease the performance of designs compared to traditional methods, with no sacrifice in
reliability.

RO has the potential to change current aerospace design paradigms by introducing math-
ematical rigor to design under uncertainty. Current aerospace conceptual design practices
still rely heavily on the expertise of established engineers even in absence of prior experience
exploring the design space. RSPs provide new opportunities in aerospace conceptual design
since they are compatible with physics based models that are deprived of or lacking in data,
and bring quantitative measures of design reliability to the table. These new opportunities
are discussed in greater detail in Section 4.2.

89

90

Chapter 4

Conclusion

To quote Theodore von Kármán,
“Scientists study the world as it is, engineers create the world that never was.”

This thesis is inspired by the potential of cutting edge optimization methods to move us
closer to that future world, where we continue to enjoy the benefits of aerospace engineering
while mitigating its deleterious effects on planet Earth.

Aerospace design is a particularly multidisciplinary and multiobjective proposition that
requires good conceptual design tools. Since few aerospace concepts have made it from
initial sketches to final products, conceptual design tools must rely on models that capture
the tradeoffs between different interacting disciplines instead of prior experience. These
include physical constraints such as those in aerodynamics and structures, but also important
human factors such as economics and ergonomics. In addition, these tools need to capture
and protect against the uncertainties that are ubiquitous in the physical world. The methods
in this thesis address these challenges and enable better conceptual design.

Conceptual design is decision making with a knowledge of tradeoffs, and optimization
is the mathematical language of decision making and tradeoffs. While there is a sense that
aerospace design is as much an art as it is a science, optimization is the language that
engineers use to both define design problems, and also communicate decisions and tradeoffs
in a quantitative manner. Optimization cannot and does not replace engineering expertise; it
is a powerful tool that enables aerospace engineers to push the envelope of what is possible,
by making decisions informed by engineering models, and helping communicate them to
many stakeholders. In this thesis we extend the capabilities of existing design optimization
tools in two fundamental ways.

The first is by expanding the scope of objectives and constraints that we can capture
using optimization. In Chapter 2, we have proposed methods to effectively optimize over
constraints and objective functions with arbitrary mathematical primitives. These tools give
flexibility to engineers in embedding a wide variety of constraints from different disciplines
into conceptual design frameworks, using mature optimization and ML methods.

The second is by rigorously considering uncertainty and associated risks in a design opti-
mization setting. Aerospace systems are sensitive to assumptions made about technological
capabilities, environmental factors, manufacturing quality and the future state of markets

91

and regulatory agencies. The methods proposed in Chapter 3 allow engineers to consider
tradeoffs in the presence of uncertainty, reducing risk and increasing confidence in both the
engineered systems and design tools.

While the methods have been presented in the context of aerospace conceptual design,
they are sufficiently general to be applied in all phases of the decision making process in
a variety of fields. In addition, the methods consider the importance of the human in the
loop; intuition, tractability and practicality have been key factors in the formulation of the
methods in this thesis. We highlight our key contributions below.

4.1 Overview of contributions

Chapter 2 proposes a global optimization approach that effectively addresses a combination
of explicit and inexplicit constraints in design. The method is more general than other
state-of-the-art methods in the literature, only requiring that decision variables in nonlinear
constraints lie in a bounded domain. Our specific contributions are as follows:

1. We propose constraint learning using optimal decision trees as a method to make effi-
cient, optimization-compatible approximations of difficult constraints and objectives.

2. We introduce an ensemble of sampling methods for constraint learning, that balance
the need for constraint learners to be both locally and globally accurate over the
domain of decision variables.

3. We solve our efficient approximations of global optimization problems using commer-
cial MIO solvers, demonstrating our method’s performance over a number of bench-
marks and real-world problems.

Chapter 3 proposes a RO approach for aerospace design by formulating the robust sig-
nomial program. This method improves on state-of-the-art stochastic optimization methods
used in the aerospace literature by demonstrating better tractability as well as probabilistic
guarantees of constraint satisfaction. We contribute to the existing literature on RO as well
as in aerospace design in the following ways:

1. We propose and implement a tractable RSP formulation for optimization under un-
certainty, that is sufficiently general to address aerospace design problems.

2. We address an aircraft design problem using our method, showing its practicality,
tractability and ability to consider uncertainty with mathematical rigor.

3. We propose new methods to consider risk in aerospace design by leveraging the poten-
tial of RO in multiobjective optimization problems, and by developing risk-minimizing
goal programming methods.

4.2 Potential future applications

While we have discussed future work for global optimization via constraint learning, and
for robust optimization for engineering design in Sections 2.8 and 3.8 respectively, we now

92

speculate as to how the proposed methods may enable new aerospace concepts through their
application.

ML-driven global optimization has the potential to revolutionize the integration of data
and simulations into optimization, during all phases of engineering design and at all levels
of simulation fidelity. This is especially important as many future aerospace concepts have
greater level of coupling between different engineering disciplines, requiring the embedding
of higher fidelity tools into conceptual design. Some examples of such future concepts are
blown-lift, boundary-layer-ingesting and morphing vehicles. Constraint learning in this con-
text would enable a better understanding of fundamental design tradeoffs from experimental
data, and allow for a more seamless conceptual design process.

Since the proposed MDO methods leverage mixed-integer optimization, they can effi-
ciently include discrete decisions, which are critical for many aerospace applications. One
domain of promise is in electric vehicle design, especially with distributed propulsion, where
OCT-HaGOn can consider discrete decisions such as the addition of battery packs, circuitry
and propulsors in a tractable framework. In addition, integer decision variables allow for
aerospace design with component libraries. Component selection has been formulated in
the past as a convex MIO [71]; the methods described in this thesis allow for component
selection over arbitrary constraints and objectives.

Since our MDO methods allow for arbitrary constraints and objectives, they allow for
efficient formulations of nonlinear dynamics and control problems as well. The importance
of optimization in aerospace guidance and control problems is well documented [64]. These
applications require fast on-vehicle computation, which is often achieved by imposing con-
vexity requirements on the underlying optimal control problems. Constraint learning and
efficient MIO may be a valid alternative for solving nonlinear control problems, especially
those that have intractable nonlinearities. Similarly, constraint learning and MIO enables
for the efficient solution of scheduling problems, while considering the nonlinearities in the
operating characteristics of the agents.

A final benefit of using the constraint learning approach in aerospace design is in mul-
tiobjective optimization, and specifically in the efficient generation of Pareto fronts. This
thesis has only considered benchmark and real-world problems with single objectives, but
the combined MIO and PGD approach can be generalized to the multiobjective context. As
discussed in Section 2.6, once the approximating OCT-Hs are trained over the difficult con-
straints in a design problem, the MIO and PGD steps are more efficient at generating new
solutions than comparable global optimization tools. This potential can be leveraged, along
with methods for Pareto-optimal solution generation such as those described by Kim and de
Weck [51], to generate Pareto-optimal designs in arbitrary number of objective dimensions.

While the potential upsides of RO in aerospace are perhaps less glamorous, they are no
less significant. Besides the clear benefits of RO in allowing designs with uncertainty protec-
tion, the optimal solutions of RO problems give engineers a clear sense of what uncertainties
have the greatest bearing on design choices. This allows for a more strategic allocation of
research and development efforts, to mitigate uncertainties and/or improve parameter values
to maximize system performance.

RO of engineered systems, by optimally allocating design margins, has the ability to
reduce the cost overruns of aerospace projects due to redesigns. Redesigns are most often
required when constraints are violated; due to the coupled nature of optimization problems,

93

even a single constraint violation can have system-wide consequences. RO mitigates this in
two ways. First and most evidently, RO optimally allocates margin on every constraint, that
makes it robust to all uncertain outcomes as defined by an uncertainty set. Additionally,
using goal programming formulations, engineers can precisely quantify how the margin on
constraint satisfaction changes as uncertain outcomes are realized. As the design process
proceeds, the bounds on the uncertainty grow tighter, potentially affecting the level of
uncertainty protection of each constraint. By computing the changes in these margins
through goal programming, engineers can decide whether or not a redesign is required.

Aerospace vehicles often have many levels of redundancy in components. This is es-
pecially true in mission-critical parts; taking the example of a commercial aircraft, some
examples of redundant systems are flight computers, tail structures and hydraulic systems.
RO may be useful to trade-off the redundancy and resiliency of different systems, depending
on uncertainties in the operational environment.

RO can also enable better evaluation of certain kinds of adaptable aerospace designs.
While robust designs protect against uncertainty by optimally allocating margins to every
constraint, adaptable designs add uncertainty protection by changing the design variables
themselves. A simple example is a fighter aircraft that is able to increase its range by
adding drop tanks under its wings. As with every added capability, adaptability comes with
tradeoffs. A fighter aircraft with drop tanks will likely be heavier, and have higher drag and
lower maneuvrability when fully loaded, than a fighter aircraft that had been designed to
achieve the same range with internal fuel. RO would allow for a more rigorous consideration
of tradeoffs in adaptable architectures, considering the variance in the types of missions
addressed as well as changes in environmental factors.

When applied to aerospace concepts with particularly high levels of exposure to uncer-
tainty, RO can inject realism into the design process. One example is in solar vehicles, which
rely heavily on assumptions and projections about technological capabilities and meteorolog-
ical conditions. These vehicles are often on the very edge of infeasibility even using optimistic
outcomes of uncertain parameters. In this context, RO would better inform designers about
the current and future feasibility of different concepts and mission architectures, without
the “inherent optimism in initial concept designs due to competitive pressures” [36].

There are also design contexts in which the joint application of constraint learning with
robust MIO may be the path forward. One example is in the design of aerospace systems
that rely on uncertain simulations. This may be either due to the simulations being inac-
curate approximations of the real world, or the simulations requiring uncertain parameter
inputs. In this particular case, it may be appropriate to apply constraint learning to discover
the underlying model in an optimization-compatible form. Using OCT-H learners from this
thesis, robustness can be injected into the model in two ways. The first would be in the
training stage, where tree training is modified so that the feasible leaf predictions are robust
to perturbations of the data. The second method would be to train the tree on data with-
out uncertainty, and then add robustness to the union-of-polyhedra approximations using
techniques from robust linear programming. In both cases, constraint learning and robust
optimization can be leveraged to optimize systems whose performance is described by the
outcomes of simulations with uncertain inputs and/or outputs.

94

Appendix A

Appendices for Global Optimization

via Optimal Decision Trees

A.1 OCT-HaGOn implementation

OCT-HaGOn is implemented in Julia 1.5.4, and will be available for use at
https://1ozturkbe.github.io/research, pending submission of the method to a journal
in January 2022. The current implementation requires an academic license for Interpretable
AI [48], but a lightweight version without Interpretable AI is also in development. While
CPLEX is OCT-HaGOn’s default solver, it also supports other MIO solvers that are com-
patible with JuMP.jl version 0.21.5 [33].

A.2 Optimizers

In Chapter 2, we use a variety of commercially available and free solvers to address different
types of optimization problems. This appendix provides a quick overview of the different
optimization tools, the versions used and their capabilities as of writing, as well as their
specific applications to different problems in Chapter 2.

� CPLEX v20.1.0.0: CPLEX, short for ILOG CPLEX Optimization Studio, is a
mixed-integer convex optimizer. It is the default solver of OCT-HaGOn, since CPLEX
is available for free to solve problems with up to 1000 variables and constraints. In
addition, academics can get an unlimited, no-cost academic license. CPLEX is used
within OCT-HaGOn to solve the tree-based MI approximations of global optimization
problems, as well as the MI-quadratic optimizations required for the PGD iterations.
CPLEX is also used in the machinery of BARON, another global optimizer; see below.

� Gurobi v9.1.1: Gurobi is a mixed-integer convex optimizer [42]. Gurobi is available
at no cost via an academic license. Due to its ability to address mixed-integer bilinear
optimization problems, Gurobi was used to solve the discretization of the OOS problem
in Section 2.7.2, as a benchmark for OCT-HaGOn.

� CONOPT v3.10: CONOPT is a gradient-based nonlinear optimizer [30]. It was

95

https://1ozturkbe.github.io/research

used to solve two large benchmarks in Section 2.6, via a one-year demo license obtained
through the General Algebraic Modeling System (GAMS) interface.

� IPOPT v3.13.4: IPOPT is a freely available interior point optimizer for NLPs [92].
It was used in Section 2.6 to solve two large benchmarks, and in Section 2.7.1 to
address the speed reducer problem.

� BARON v21.1.13: BARON is a commercially available MINLP solver that accepts
a subset of nonlinear primitives [81]. BARON uses CPLEX as its back-end MIO solver
for its branch-and-reduce solution approach. We purchased a BARON license to be
able to solve 5 small benchmarks and 2 large benchmarks in Section 2.6.

A.3 Speed reducer problem

We detail the constraints in the speed reducer problem addressed in Section 2.7.1. Note
that it has been transcribed from [77] into standard form as defined in Section 2.4.1.

min
x

0.7854𝑥1𝑥
2
2(3.3333𝑥

2
3 + 14.9334𝑥3 − 43.0934)

− 1.5079𝑥1(𝑥
2
6 + 𝑥27) + 7.477(𝑥36 + 𝑥37)

s.t. − 27 + 𝑥1𝑥
2
2𝑥3 ≥ 0,

− 397.5 + 𝑥1𝑥
2
2𝑥

2
3 ≥ 0,

− 1.93 +
𝑥2𝑥

4
6𝑥3

𝑥34
≥ 0,

− 1.93 +
𝑥2𝑥

4
7𝑥3

𝑥35
≥ 0,

110.0𝑥36 −

(︃(︁745𝑥4
𝑥2𝑥3

)︁2
+ 16.9× 106

)︃0.5

≥ 0,

85.0𝑥37 −

(︃(︁745𝑥5
𝑥2𝑥3

)︁2
+ 157.5× 106

)︃0.5

≥ 0,

40− 𝑥2𝑥3 ≥ 0,

𝑥1 − 5𝑥2 ≥ 0,

12𝑥2 − 𝑥1 ≥ 0,

𝑥4 − 1.5𝑥6 − 1.9 ≥ 0,

𝑥5 − 1.1𝑥7 − 1.9 ≥ 0,

x ≥ [2.6, 0.7, 17, 7.3, 7.3, 2.9, 5],

x ≤ [3.6, 0.8, 28, 8.3, 8.3, 3.9, 5.5],

𝑥3 ∈ Z.

96

Iteration 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 Objective
1 3.5 0.7 17.0 7.3 7.71590 3.35011 5.28718 3018.809
2 3.5 0.7 17.0 7.3 7.71590 3.35011 5.28718 2994.674
3 3.5 0.7 17.0 7.3 7.71590 3.35021 5.28718 2994.700
4 3.5 0.7 17.0 7.3 7.71532 3.35021 5.28665 2994.355
5 3.5 0.7 17.0 7.3 7.71532 3.35021 5.28665 2994.355

Table A.1: Speed reducer PGD iterations.

A.3.1 Speed reducer PGD iterations

The speed reducer problem is converged to a feasible and locally optimal solution from the
MIO solution in 4 PGD steps. The decision variable and objective values at each iteration
are given in Table A.1.

A.4 Satellite OOS problem

The satellite OOS problem has the following decision variables and associated dimensions,
where 𝑛𝑠 is the number of client satellites.

Satellite order variables : 𝑧𝑖,𝑗 ∈ {0, 1}, 𝑖, 𝑗 ∈ [𝑛𝑠],

Orbit radii : 𝑟orbit,𝑖 ∈ [𝑟orbit,min, 𝑟orbit,max], 𝑖 ∈ [𝑛𝑠 − 1],

Orbital periods : 𝑇orbit,i ∈ [𝑇orbit,min, 𝑇orbit,max], 𝑖 ∈ [𝑛𝑠 − 1],

Orbital period differences : Δ𝑇orbit,i ∈ [Δ𝑇min,Δ𝑇max], 𝑖 ∈ [𝑛𝑠 − 1],

True anomalies : 𝜃𝑖 ∈ [−𝜋, 𝜋], 𝑖 ∈ [𝑛𝑠 − 1],

Transfer times : 𝑡transfer,i ∈ [0, 𝑡transfer,max], 𝑖 ∈ [𝑛𝑠 − 1],

Maneuver times : 𝑡maneuver,i ∈ R+, 𝑖 ∈ [𝑛𝑠 − 1],

Orbital revolutions : 𝑁orbit,𝑖 ∈ [50, 500], 𝑖 ∈ [𝑛𝑠 − 1],

Orbital entry mass ratios : 𝑓entry,i ∈ [1, 1.0025], 𝑖 ∈ [𝑛𝑠 − 1],

Orbital exit mass ratios : 𝑓exit,i ∈ [1, 1.0025], 𝑖 ∈ [𝑛𝑠 − 1],

Wet mass : 𝑚wet ∈ [𝑚dry, 2000],

Intermediate masses : 𝑚𝑖,𝑗 ∈ [𝑚dry, 2000], 𝑖 ∈ [𝑛𝑠 − 1], 𝑗 ∈ [5],

Transferred fuel masses : 𝑚fuel,i ∈ [𝑚fuel,min,𝑚fuel,max], 𝑖 ∈ [𝑛𝑠].

The objective function is to minimize the wet (i.e. fueled) mass of the satellite. Note that
the orbital quantities define the phasing orbits that the servicer uses to transfer between
client satellites, and all altitudes are converted to radii with respect to the center of the
Earth for simplicity.

The bounds 𝑟orbit,min, 𝑟orbit,max, 𝑚dry are defined in Table 2.8 as the minimum and max-
imum servicer altitudes, and the servicer dry mass respectively. 𝑚fuel,min and 𝑚fuel,max are
the minimum and maximum of the fuel requirements shown in Figure 2-11. Since 𝑡maneuver,i

97

is not in any nonlinear constraints, it doesn’t require bounds. The remaining bounds are
defined as a function of problem parameters such as specific impulse 𝐼sp, maximum service
time 𝑡max, client orbital altitude 𝑟client and client fuel requirements Δ𝑚cf,i, 𝑖 ∈ [𝑛𝑠]; as well
as physical constants such as the gravitational constant 𝜇, and gravitational acceleration 𝑔.

𝑇client = 2𝜋

√︂
𝑟client
𝜇

𝑇orbit,min = 2𝜋

√︂
𝑟orbit,min

𝜇

𝑇orbit,max = 2𝜋

√︂
𝑟orbit,max

𝜇

Δ𝑇orbit,min = −max(|Torbit,i − Tclient|, ∀i ∈ [ns − 1])

Δ𝑇orbit,max = max(|Torbit,i − Tclient|, ∀i ∈ [ns − 1])

𝑡transfer,max = 2𝜋

√︂
𝑟orbit,max + 𝑟client

8𝜇

A.4.1 Linear constraints

The constraints are given below with brief descriptions.

Each client visited once :

𝑛𝑠∑︁
𝑖=1

𝑧𝑖,𝑗 = 1, ∀𝑗 ∈ [𝑛𝑠]

One refuel per rendezvous :

𝑛𝑠∑︁
𝑗=1

𝑧𝑖,𝑗 = 1, ∀𝑖 ∈ [𝑛𝑠]

Fuel required for 𝑖th client : 𝑚fuel,i =

𝑛𝑠∑︁
𝑗=1

Δ𝑚cf,j𝑧𝑖,𝑗 , ∀𝑖 ∈ [𝑛𝑠]

True anomaly from client 𝑖 to 𝑖+ 1 : 𝜃𝑖 =

𝑛𝑠∑︁
𝑗=1

(︃
(−𝜋 + 2𝜋𝑗/𝑛𝑠)(𝑧𝑖+1,𝑗 − 𝑧𝑖,𝑗)

)︃
, ∀𝑖 ∈ [𝑛𝑠 − 1]

Wet mass : 𝑚wet = 𝑚1,1 +𝑚fuel,1

Intermediate fuel transfers : 𝑚𝑖,5 = 𝑚𝑖+1,1 +𝑚fuel,i+1, ∀𝑖 ∈ [𝑛𝑠 − 2]

Dry mass : 𝑚𝑛𝑠−1,5 = 𝑚dry +𝑚fuel,ns

Orbital period difference : Δ𝑇orbit,i = 𝑇orbit,i − 𝑇client, ∀𝑖 ∈ [𝑛𝑠 − 1]

Total maneuver time :

𝑛𝑠−1∑︁
𝑖=1

𝑡maneuver,i ≤ 𝑡max

A.4.2 Nonlinear constraints

The nonlinear constraints fall into 7 distinct forms, which are repeated in the satellite
dynamical system. The list of 60 nonlinear constraints, as well as brief descriptions are
below:

98

� Transfer orbit entry burn (𝑛𝑠 − 1 constraints): Describes mass ratio (entry mass over
exit mass) of the satellite during transfer orbit entry.

𝑓entry,i = max

[︃
exp

(︃
1

𝑔𝐼sp

√︂
𝜇

𝑟orbit,i

(︃√︃
2𝑟client

𝑟client + 𝑟orbit,i
− 1

)︃)︃
,

exp

(︃
1

𝑔𝐼sp

√︂
𝜇

𝑟client

(︃√︃
2𝑟orbit,i

𝑟client + 𝑟orbit,i
− 1

)︃)︃]︃
, 𝑖 ∈ [𝑛𝑠 − 1].

� Transfer orbit exit burn (𝑛𝑠 − 1 constraints): Describes the mass ratio (entry mass
over exit mass) of the satellite during transfer orbit exit.

𝑓exit,i = max

[︃
exp

(︃
1

𝑔𝐼sp

√︂
𝜇

𝑟client

(︃
1−

√︃
2𝑟orbit,i

𝑟client + 𝑟orbit,i

)︃)︃
,

exp

(︃
1

𝑔𝐼sp

√︂
𝜇

𝑟orbit,i

(︃
1−

√︃
2𝑟client

𝑟client + 𝑟orbit,i

)︃)︃]︃
, 𝑖 ∈ [𝑛𝑠 − 1].

� Mass conservation (4(𝑛𝑠 − 1) constraints): Couples the fractional change in mass of
the satellite to the absolute change in mass during each burn phase.

𝑚𝑖,1 = 𝑓entry,i𝑚𝑖,2, 𝑖 ∈ [𝑛𝑠 − 1],

𝑚𝑖,2 = 𝑓exit,i𝑚𝑖,3, 𝑖 ∈ [𝑛𝑠 − 1],

𝑚𝑖,3 = 𝑓exit,i𝑚𝑖,4, 𝑖 ∈ [𝑛𝑠 − 1],

𝑚𝑖,4 = 𝑓entry,i𝑚𝑖,5, 𝑖 ∈ [𝑛𝑠 − 1].

� Phasing orbit period (𝑛𝑠 − 1 constraints): Describes the period of the phasing orbit.

𝑇orbit,i = 2𝜋

√︃
𝑟3orbit,i
𝜇

, 𝑖 ∈ [𝑛𝑠 − 1].

� Transfer time (𝑛𝑠 − 1 constraints): Describes the Hohmann transfer time from the
client to phasing orbit.

𝑡transfer,i = 2𝜋

√︃
(𝑟client + 𝑟orbit,i)3

8𝜇
, 𝑖 ∈ [𝑛𝑠 − 1].

� Number of transfer orbit revolutions (𝑛𝑠 − 1 constraints): Describes the number of
revolutions in phasing orbit.

𝑁orbit,iΔ𝑇orbit,i = 𝑇client,i𝜃𝑖, 𝑖 ∈ [𝑛𝑠 − 1].

� Maneuver time (𝑛𝑠−1 constraints): Describes the maneuver time (transfer and phasing

99

time) between clients.

𝑡maneuver,i = 𝑡transfer,i +𝑁orbit,i𝑇orbit,i, 𝑖 ∈ [𝑛𝑠 − 1].

100

Appendix B

Appendices for Optimal Engineering

Design Decisions Under Uncertainty

B.1 RSP implementation

Robust geometric and signomial programming formulations from [80] and this thesis are
implemented in Python 3.9, and are available for use at
https://1ozturkbe.github.io/research. The current implementation couples to opti-
mization models built via GPkit, a Python package that provides abstractions for using
GPs and SPs in engineering design [18]. While the RSP models can be solved using CVX-
OPT [89], a freely available conic solver that is installed with GPkit by default, we recom-
mend Mosek [2] due to its higher performance. Mosek is available at no cost via an academic
license.

B.2 Review of robust linear programming

Principles from robust linear programming are key for approximating robust geometric pro-
grams.

Consider the system of linear constraints

Ax+ b ≤ 0

where

A is 𝑚× 𝑛

x is 𝑛× 1

b is 𝑚× 1

(B.1)

where the uncertain data is contained in a set defined by (3.3) and (3.4).

101

https://1ozturkbe.github.io/research

B.2.1 Box uncertainty set

If the perturbation set 𝒵 given in (3.4) is a box uncertainty set, i.e. ‖𝜁‖∞ ≤ Γ, then the
robust formulation of the 𝑖th constraint is equivalent to

Γ
∑︀𝐿

𝑙=1| − 𝑏𝑙𝑖 − a𝑙𝑖x|+ a0𝑖x+ 𝑏0𝑖 ≤ 0 (B.2)

If only 𝑏 is uncertain, i.e. 𝐴𝑙 = 0, ∀𝑙 ∈ [𝐿], then constraint (B.2) becomes∑︀𝐿
𝑙=1a

0
𝑖x+ 𝑏0𝑖 + Γ

∑︀𝐿
𝑙=1|𝑏𝑙𝑖| ≤ 0 (B.3)

which is a linear constraint.

On the other hand, if 𝐴 is uncertain, then (B.2) is equivalent to the following set of
linear constraints:

Γ
∑︀𝐿

𝑙=1𝑤
𝑙
𝑖 + a0𝑖x+ 𝑏0𝑖 ≤ 0

−𝑏𝑙𝑖 − a𝑙𝑖x ≤ 𝑤𝑙
𝑖, ∀𝑙 ∈ [𝐿],

𝑏𝑙𝑖 + a𝑙𝑖x ≤ 𝑤𝑙
𝑖, ∀𝑙 ∈ [𝐿].

(B.4)

B.2.2 Ellipsoidal uncertainty set

If the perturbation set 𝒵 is an ellipsoidal, i.e.
∑︀𝐿

𝑙=1
𝜁2𝑙
𝜎2
𝑙
≤ Γ2, then the robust formulation

of the 𝑖𝑡ℎ constraint is equivalent to

Γ

√︁∑︀𝐿
𝑙=1𝜎

2
𝑙 (−𝑏𝑙𝑖 − a𝑙𝑖x)

2 + a0𝑖x+ 𝑏0𝑖 ≤ 0, (B.5)

which is a second order conic constraint.

If only 𝑏 is uncertain, i.e. A𝑙 = 0, ∀𝑙 ∈ [𝐿], then (B.5) becomes

∑︀𝐿
𝑙=1a

0
𝑖x+ 𝑏0𝑖 + Γ

√︁∑︀𝐿
𝑙=1𝜎

2
𝑙 (𝑏

𝑙
𝑖)
2 ≤ 0, (B.6)

which is a linear constraint.

B.2.3 Norm-1 uncertainty set

If the perturbation set represented by 𝒵 is a norm-1 uncertainty set, i.e. ‖𝜁‖1 ≤ Γ, then
the robust constraint is ∑︀𝐿

𝑙=1a
0
𝑖x+ 𝑏0𝑖 + Γmax𝑙∈[𝐿] |𝑏𝑙𝑖| ≤ 0 (B.7)

when A𝑙 = 0, and

Γ𝑤𝑖 + a0𝑖x+ 𝑏0𝑖 ≤ 0,

−𝑏𝑙𝑖 − a𝑙𝑖x ≤ 𝑤𝑖, ∀𝑙 ∈ [𝐿],

𝑏𝑙𝑖 + a𝑙𝑖x ≤ 𝑤𝑖, ∀𝑙 ∈ [𝐿],

(B.8)

102

if A𝑙 ̸= 0. Note that for this type of uncertainty, the robust constraints are linear.

103

104

Bibliography

[1] Jeremy Agte, Olivier de Weck, Jaroslaw Sobieszczanski-Sobieski, Paul Arendsen, Alan
Morris, and Martin Spieck. MDO: Assessment and direction for advancement-an opinion
of one international group. Structural and Multidisciplinary Optimization, 40(1-6):17–
33, 2010.

[2] MOSEK ApS. MOSEK Optimizer API for Python, 2020. Version 9.0.

[3] S. J. Bates, J. Sienz, and D. S. Langley. Formulation of the Audze-Eglais Uniform Latin
Hypercube design of experiments. Advances in Engineering Software, 34(8):493–506,
2003.

[4] Stuart J. Bates, Johann Sienz, and Vassili V. Toropov. Formulation of the optimal latin
hypercube design of experiments using a permutation genetic algorithm. Collection of
Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics
and Materials Conference, 7(April 2004):5217–5223, 2004.

[5] R. Belie. Non-technical barriers to multidisciplinary optimization in the aerospace in-
dustry. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
(September):1–6, 2002.

[6] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of Linear Programming
problems contaminated with uncertain data. Mathematical Programming, Series B,
88(3):411–424, 2000.

[7] María Lorena Bergamini, Ignacio Grossmann, Nicolás Scenna, and Pío Aguirre. An im-
proved piecewise outer-approximation algorithm for the global optimization of MINLP
models involving concave and bilinear terms. Computers and Chemical Engineering,
32(3):477–493, 2008.

[8] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and Ap-
plications of Robust Optimization. Society for Industrial and Applied Mathematics,
2011.

[9] Dimitris Bertsimas, Dick den Hertog, and Jean Pauphilet. Probabilistic Guarantees in
Robust Optimization. SIAM Journal on Optimization, 31(4):2893–2920, 2021.

[10] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning,
106(7):1039–1082, 2017.

105

[11] Dimitris Bertsimas and Jack Dunn. Machine Learning Under a Modern Optimization
Lens. Dynamic Ideas LLC, 2019.

[12] Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimiza-
tion. Mathematical Programming, 167(2):235–292, 2018.

[13] Dimitris Bertsimas and Melvyn Sim. The Price of Robustness. Operations Research,
52(1):35–53, 2004.

[14] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

[15] Max Biggs and Rim Hariss. Optimizing Objective Functions Determined from Random
Forests. SSRN Electronic Journal, pages 1–46, 2017.

[16] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial
on geometric programming. Optimization and Engineering, 8(1):67–127, Oct 2007.

[17] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification and
regression trees. wadsworth int. Group, 37(15):237–251, 1984.

[18] Edward Burnell, Nicole B Damen, and Warren Hoburg. GPkit: a Human-Centered
Approach to Convex Optimization in Engineering Design. Proceedings of the Computer
Human Interface (CHI) Conference on Human Factors in Computing Systems, pages
1–13, 2020.

[19] Edward Burnell, Nicole B Damen, and Warren Hoburg. GPkit: A human-centered
approach to convex optimization in engineering design. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, pages 1–13, 2020.

[20] Michael Burton and Warren Hoburg. Solar and Gas Powered Long-Endurance Un-
manned Aircraft Sizing via Geometric Programming. Journal of Aircraft, 55(1), 2018.

[21] Michael R. Bussieck, Arne Stolbjerg Drud, and Alexander Meeraus. MINLPLib - A
collection of test models for mixed-integer nonlinear programming. INFORMS Journal
on Computing, 15(1):114–119, 2003.

[22] Andre Chassein and Marc Goerigk. Robust geometric programming is co-np hard. 2014.

[23] Xin Chen, Melvyn Sim, and Peng Sun. A Robust Optimization Perspective on Stochas-
tic Programming. Operations Research, 55(6):1058–1071, 2007.

[24] A. J. Conejo, F. J. Nogales, and F. J. Prieto. A decomposition procedure based on
approximate Newton directions. Mathematical Programming, Series B, 93(3):495–515,
2002.

[25] Corinna Cortes, L.D. Jackel, and Wan-Ping Chiang. Limits on Learning Machine Ac-
curacy Imposed by Data Quality. Proceedings of the Association for the Advancement
of Artificial Intelligence Conference on Knowledge Discovery and Data Mining, pages
57–62, 1995.

106

[26] Urmila Diwekar. Introduction to applied optimization, volume 22. Springer Science &
Business Media, 2008.

[27] Mark Drela. XFOIL: An Analysis and Design System for Low Reynolds Number Air-
foils. Proceedings of the Conference on Low Reynolds Number Aerodynamics, Notre
Dame, Indiana, pages 1–12, 1989.

[28] Mark Drela. Pros and Cons of Airfoil Optimization. Proceedings of Frontiers of Com-
putational Fluid Dynamics, (November):1–19, 1998.

[29] Mark Drela. Low-Order Modeling for Conceptual Aircraft Design and Development of
the D8 Transport Concept. Stanford AA295 Seminar, pages 1–77, 2011.

[30] Arne S. Drud. CONOPT - A Large Scale GRG Code. ORSA Journal on Computing,
6(2), 1994.

[31] R.J Duffin, E.L. Peterson, and C. Zener. Geometric programming: theory and applica-
tion. Wiley New York, 1967.

[32] Jack William Dunn. Optimal Trees for Prediction and Prescription. PhD thesis, Mas-
sachusetts Institute of Technology, 2014.

[33] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language for math-
ematical optimization. SIAM Review, 59(2):295–320, 2017.

[34] Marco A. Duran and Ignacio E. Grossman. An Outer-Approximation Algorithm for a
Class of Mixed-Integer Nonlinear Programs. Mathematical Programming, 36:307–339,
1986.

[35] Peter I Frazier. Bayesian Optimization. INFORMS TutORials in Operations Research,
pages 9–11, October 2018.

[36] Claude W Freaner, Robert E Bitten, David A Bearden, and Debra Emmons. An
Assessment of the Inherent Optimism in Early Conceptual Designs. Proceedings of the
SSCAG / SCAF / EACE 2008 Joint International Conference, 2008.

[37] François Gallard, Matthieu Meaux, Marc Montagnac, and Bijan Mohammadi. Aerody-
namic aircraft design for mission performance by multipoint optimization. 21st AIAA
Computational Fluid Dynamics Conference, pages 1–17, 2013.

[38] Claudio Gambella, Bissan Ghaddar, and Joe Naoum-Sawaya. Optimization problems
for machine learning: A survey. European Journal of Operational Research, 290(3):807–
828, 2021.

[39] Michael Gastegger, Jörg Behler, and Philipp Marquetand. Machine learning molecular
dynamics for the simulation of infrared spectra. Chemical Science, 8(10):6924–6935,
2017.

[40] Juan S. Giraldo, Jhon A. Castrillon, Juan Camilo Lopez, Marcos J. Rider, and Carlos A.
Castro. Microgrids Energy Management Using Robust Convex Programming. IEEE
Transactions on Smart Grid, 10(4):4520–4530, 2019.

107

[41] Jan Golinski. Optimal Synthesis Problems Solved by Means of Nonlinear Programming
and Random Methods. Journal of Mechanisms, 5(March 1969):287–309, 1970.

[42] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

[43] Julia L. Higle and Suvrajeet Sen. Stochastic Decomposition: An Algorithm for Two-
Stage Linear Programs with Recourse. Mathematics of Operations Research, 16(3):650–
669, 1991.

[44] Warren Hoburg, Philippe Kirschen, and Pieter Abbeel. Data fitting with geometric-
programming-compatible softmax functions. Optimization and Engineering, 17(4):897–
918, 2016.

[45] Warren Woodrow Hoburg. Aircraft Design Optimization as a Geometric Program. PhD
thesis, Massachusetts Institute of Technology, 2013.

[46] R. Horst, Ng.V. Thoai, and H. Tuy. On an Outer Approximation Concept in Global
Optimization. Optimization, 20(3):255–264, 1989.

[47] Kan Lin Hsiung, Seung Jean Kim, and Stephen Boyd. Tractable approximate robust
geometric programming. Optimization and Engineering, 9(2):95–118, 2008.

[48] Interpretable AI, LLC. Interpretable AI Documentation, 2022.

[49] P Kall and D Stoyan. Solving stochastic programming problems with recourse including
error bounds. Math. Operationsforsch. Statist. Ser. Optim., 13(3):431–447, 1982.

[50] Michael G Kapteyn, David J Knezevic, and Karen Willcox. Toward predictive digital
twins via component-based reduced-order models and interpretable machine learning.
Proceedings of the AIAA Scitech 2020 Forum, 2020.

[51] I. Y. Kim and O. L. de Weck. Adaptive weighted sum method for multiobjective opti-
mization: A new method for Pareto front generation. Structural and Multidisciplinary
Optimization, 31(2):105–116, 2006.

[52] Philippe G. Kirschen, Edward Burnell, and Warren Hoburg. Signomial programming
models for aircraft design. 54th AIAA Aerospace Sciences Meeting, Feb 2016.

[53] Philippe G. Kirschen and Warren W. Hoburg. The Power of Log Transformation:
A Comparison of Geometric and Signomial Programming with General Nonlinear Pro-
gramming Techniques for Aircraft Design Optimization. 2018 AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, 2018.

[54] Philippe G. Kirschen, Martin A. York, Berk Öztürk, and Warren W. Hoburg. Appli-
cation of signomial programming to aircraft design. Journal of Aircraft, 55(3):965–987,
2018.

[55] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and
Stephan Hoyer. Machine learning – accelerated computational fluid dynamics. Proceed-
ings of the National Academy of Sciences, 118, 2021.

108

[56] Rhea P. Liem, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. Multimission
Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization. AIAA
Journal, 53(1):104–122, 2015.

[57] Rhea P. Liem, Joaquim R.R.A. Martins, and Gaetan K.W. Kenway. Expected drag
minimization for aerodynamic design optimization based on aircraft operational data.
Aerospace Science and Technology, 63:344–362, 2017.

[58] Ming Hua Lin and Jung Fa Tsai. Range reduction techniques for improving computa-
tional efficiency in global optimization of signomial geometric programming problems.
European Journal of Operational Research, 216(1):17–25, 2012.

[59] Thomas Lipp and Stephen Boyd. Variations and extension of the convex – concave
procedure. Optimization and Engineering, 17(2):263–287, 2016.

[60] Zhi Quan Luo and Wei Yu. An introduction to convex optimization for communications
and signal processing. IEEE Journal on Selected Areas in Communications, 24(8):1426–
1438, 2006.

[61] Michael Luu and Daniel Hastings. Valuation of On-Orbit Servicing in Proliferated Low-
Earth Orbit Constellations. Proceedings of AIAA ASCEND 2020, pages 0–14, 2020.

[62] Alessandro Magnani and Stephen P. Boyd. Convex piecewise-linear fitting. Optimiza-
tion and Engineering, 10(1):1–17, 2009.

[63] Alessandro Magnani, Sanjay Lall, and Stephen Boyd. Tractable fitting with convex
polynomials via sum-of-squares. Proceedings of the 44th IEEE Conference on Decision
and Control, and the European Control Conference, CDC-ECC ’05, 2005:1672–1677,
2005.

[64] Yuanqi Mao, Michael Szmuk, and Behcet Açikmeşe. A Tutorial on Real-time Convex
Optimization Based Guidance and Control for Aerospace Applications. Proceedings of
the American Control Conference, 2018-June:2410–2416, 2018.

[65] Donato Maragno, Holly Wiberg, Dimitris Bertsimas, S. Ilker Birbil, Dick den Her-
tog, and Adejuyigbe Fajemisin. Mixed-Integer Optimization with Constraint Learning.
ArXiv, pages 1–48, 2021.

[66] Joaquim R. R. A. Martins and Andrew B. Lambe. Multidisciplinary Design Optimiza-
tion: A Survey of Architectures. AIAA Journal, 51(9):2049–2075, 2013.

[67] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979.

[68] Velibor V. Mišić. Optimization of tree ensembles. Operations Research, 68(5):1605–
1624, 2020.

109

[69] Tobias Morawietz and Nongnuch Artrith. Machine learning-accelerated quantum
mechanics-based atomistic simulations for industrial applications. Journal of Computer-
Aided Molecular Design, 35(4):557–586, 2021.

[70] Yurii Nesterov and Arkadi Nemirovski. Interior-Point Polynomial Algorithms in Convex
Programming. Society for Industrial and Applied Mathematics, 1994.

[71] Johannes Norheim. Satellite Component Selection with Mixed Integer Nonlinear Pro-
gramming. IEEE Aerospace Conference Proceedings, 2020.

[72] Berk Öztürk. Conceptual Engineering Design and Optimization Methodologies using
Geometric Programming. Master’s thesis, Massachusetts Institute of Technology, 2018.

[73] Berk Öztürk, Michael J. Burton, and Warren W. Hoburg. Design of an Unmanned
Aerial Vehicle for Long-Endurance Communication Support. AIAA Aviation Forum,
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, (June):1–
18, 2017.

[74] Berk Öztürk and Ali Saab. Optimal aircraft design decisions under uncertainty using
robust signomial programming. AIAA Journal, 59(5):1773–1785, 2021.

[75] Athanasios Papageorgiou, Mehdi Tarkian, Kristian Amadori, and Johan Ölvander. Mul-
tidisciplinary design optimization of aerial vehicles: A review of recent advancements.
International Journal of Aerospace Engineering, 2018, 2018.

[76] M.V.F. Pereira and L.M.V.G. Pinto. Multi-stage stochastic optimization applied to
energy planning. Mathematical Programming, 52(1-3):359–375, 1991.

[77] Tapabrata Ray. Golinski’s speed reducer problem revisited. AIAA Journal, 41(3):556–
558, 2003.

[78] D.P. Raymer, American Institute of Aeronautics, and Astronautics. Aircraft design: a
conceptual approach. Educ Series. American Institute of Aeronautics and Astronautics,
4th edition, 1989.

[79] Hong S. Ryoo and Nikolaos V. Sahinidis. A branch-and-reduce approach to global
optimization. Journal of Global Optimization, 8(2):107–138, 1996.

[80] Ali Saab, Edward Burnell, and Warren W. Hoburg. Robust Designs via Geometric
Programming. pages 1–23, 2018.

[81] N. V. Sahinidis. BARON 21.1.13: Global Optimization of Mixed-Integer Nonlinear
Programs, User’s Manual, 2017.

[82] Nikolaos V. Sahinidis. BARON: A general purpose global optimization software pack-
age. Journal of Global Optimization, 8(2):201–205, 1996.

[83] M. C. Shewry and H. P. Wynn. Maximum entropy sampling. Journal of Applied
Statistics, 14(2):165–170, 1987.

110

[84] D.B. Shmoys and C. Swamy. Stochastic Optimization is (Almost) as easy as Determin-
istic Optimization. Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, 2004.

[85] Jaroslaw Sobieszczanski-Sobieski and Raphael T. Haftka. Multidisciplinary Aerospace
Design Optimization: Survey of Recent Developments. 34th Aerospace Sciences Meeting
and Exhibit, 1995.

[86] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A Survey of Optimization Methods
from a Machine Learning Perspective. IEEE Transactions on Cybernetics, 50(8):3668–
3681, 2020.

[87] Gene A. Tagliarini, J. Fury Christ, and W. Page, Edward. Optimization Using Neural
Networks. IEEE Transactions on Computers, 40(12):1347–1358, 1991.

[88] Tony Tao. Design, Optimization, and Performance of an Adaptable Aircraft Manufac-
turing Architecture. PhD thesis, Massachusetts Institute of Technology, 2018.

[89] L Vandenberghe. The CVXOPT linear and quadratic cone program solvers. 2010.

[90] Arun Verma. An introduction to automatic differentiation. Current Science, 78(7):804–
807, 2000.

[91] Juan Pablo Vielma. Mixed Integer Linear Programming Formulation Techniques. SIAM
Review, 57(1):3–57, 2015.

[92] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math. Program.,
106:25–57, 2006.

[93] Wen Yao, Xiaoqian Chen, Wencai Luo, Michel van Tooren, and Jian Guo. Review of
uncertainty-based multidisciplinary design optimization methods for aerospace vehicles.
Progress in Aerospace Sciences, 47(6):450 – 479, 2011.

[94] Martin A York, Berk Öztürk, Edward Burnell, and Warren W Hoburg. Efficient aircraft
multidisciplinary design optimization and sensitivity analysis via signomial program-
ming. AIAA Journal, pages 1–16, 2018.

[95] T. a. Zang, M. J. Hemsch, M. W. Hilburger, S. P. Kenny, J. M. Luckring, P. Maghami,
S. L. Padula, and W. J. Stroud. Needs and opportunities for uncertainty-based multi-
disciplinary design methods for aerospace vehicles. Nasa Tm, 211462(July), 2002.

111

	Introduction
	Challenges and trends in aerospace design
	Review of aerospace conceptual design methods
	 The mathematical optimization design paradigm
	Mathematical background

	Improving conceptual design through optimization
	Thesis objectives and outline

	Global Optimization via Optimal Decision Trees
	Review of global optimization
	Role of machine learning in optimization

	Review of decision trees
	Contributions
	Method
	Standard form problem
	Sampling and evaluation of nonlinear constraints
	Decision tree training
	MI approximation
	Solution of MIO approximation
	Solution checking and repair

	Demonstrative example
	Computational experiments on benchmarks
	Real world examples
	Speed reducer problem
	Satellite OOS problem

	Discussion
	Conclusion

	Optimal Engineering Design Decisions Under Uncertainty
	Approaches to design optimization under uncertainty
	Comparison of robust and stochastic optimization for design

	Contributions
	Mathematical theory of robustness
	Robust signomial programming formulation
	Review of tractable robust geometric programming
	Solution of robust signomial programs

	Aerospace problem
	Uncertainties and sets
	Design parameter uncertainties
	Uncertainty sets considered

	Results
	Mitigation of probability of failure
	Effect of robustness on multiobjective performance
	Risk minimization problems

	Discussion
	Conclusion

	Conclusion
	Overview of contributions
	Potential future applications

	Appendices for Global Optimization via Optimal Decision Trees
	OCT-HaGOn implementation
	Optimizers
	Speed reducer problem
	Satellite OOS problem

	Appendices for Optimal Engineering Design Decisions Under Uncertainty
	RSP implementation
	Review of robust linear programming

