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Algorithmic Strategy Generation

= Possible actions can be combined into sequential strategies that accomplish a

mission.
a e a4 a3 a5 *
= But given actions with uncertain outcomes, good strategies still have a chance to

fail! *
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Adaptive Strategies via Decision Trees

» Prescriptive decision trees define the next optimal action in the strategy
sequence based on the uncertain outcomes of previous actions, while
accounting for the complex interdependencies between actions and outcomes.
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Real-Time Human Machine Teaming
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Applications of Decision Trees: Cybersecurity
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START:
Do 'Start admin attack’ di1l,
Do 'Seek admin authorization®' dl2,
If 'Full success' dl12-1 | Prob: ©.15
Do ‘Attempt access to crown jewel CPU' dl14
I+ 'Some success' dl4-1 | Prob: 8.70 |, |
ac .
Do 'Creating phishing traps®' d22,
If 'Success with a high level user® d22-1 | Prob: 0.20 |,
Do 'Corrupt important database’ d23,
If 'Major damage' d23-1,
STOP.
If ‘Minor damage®' d23-2 | Prob: 0.15 |,
STOP.
If "No damage’ d23-3 | Prob: 0.05 |,
STOP.
If 'Success with a low level user' d22-2 | Prob: 0.80 |,
Do 'Seek other phishing opportunities’ d24,
If "Minor success' d24-1 | Prob: 0.70 |,
STOP.
If 'Major success' d24-2 | Prob: 0.30 |,
STOP.
If 'Great success' dl4-2 | Prob: 0.21 |,
Do "Start phishing attack' d21,
Do ‘Creating phishing traps' d22,

*illustrative
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Scope

e Actions, with

* Discrete probabilistic outcomes (not restricted to binary outcome actions)

* Complex Interdependencies, such as:

* Prerequisites, i.e. actions that must be attempted and result in a specific
outcome before another action may be attempted, and

* Preclusions, i.e. actions that if attempted and resulting in a specific
outcome prevent another action from being attempted.

 Decision Space

* Finite, and terminates either when the agent's goals are achieved, or when no
additional actions are available.
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lllustrative Example: Input

Prerequisite Preclusion Outcome | Probability | Reward
0.4
0.6
0.4
0.6
0.7
0.3
0.7
0.3
0.4
0.6
0.6
0.4
0.9
0.1

—

Seek admin

authorization
Create phishing

traps 1
Create phishing

traps 2
Corrupt
database
Attack

asset 1
Attack

asset 2
Attack

assets 2 and 3

(a1,2) OR ((1,3,2)

(aa,2) (az,1) OR (a3,2)

(a4,2) AND (a2,2)

(aiia2)

DN DN N =N DN DN =D

*illustrative
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Probabiy

lllustrative Example: Input

S CITTE—

ai,

Action Dependency Graph Action Data

start ——
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lllustrative Example: Output

Action Prerequisite Preclusion Outcome | Probability | Reward
1 0.4
0.6
0.4
0.6
0.7
0.3
0.7
0.3
0.4
0.6
0.6
0.4
0.9
0.1

al - -

az

as =

aq ((11,2) OR (a,;;,2) -

as ((14,2) ((],3,1) OR (a;;,2)

ag (a4,2) AND (a2,2) -

N DN N DN DN DN DN

az (a3,2)
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Optimal Decision Trees vs Markov Decision Processes

Scope of the State

« DTs: Encodes all past actions of the agent so it is impossible for a state to be
revisited.

 MDPs: Encodes minimal information about past actions so the state space is a
closed system where states can be revisited.

Termination Criteria

« DTs: Leverages the finite state space that is created by termination criteria where
no additional actions can be taken or a goal is reached.

« MDPs: Can be formulated with absorbing states or action budget constraints, but
those add significant computational complexity.

Our approach can efficiently model problems with complex interdependencies
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Nomenclature
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Moving through the state space

Below are the mathematical primitives describing state transitions.

e State s € Z™ describes the here-and-now,

e Each action r := {(p;,A;),Vj € |r|} is a set that contains state
changes A; and associated probabilities p;,

e Action function R(s) returns all actions available at s
(abstracts away dependencies).

An action r € R(s) taken at state s gives new state s + A;
with probability p;.
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Obtaining rewards while meeting budgets

As aforementioned, we solve a finite-horizon decision problem, so we need the
following machinery:

e Cost function ¢(r) maps each action r to its associated cost,
e Budget function B(s) returns the remaining budget at state s,
e Reward function p(s) evaluates the reward achieved at state s.

We don’t place any constraints on the form of these functions, other than re-
stricting the budget to monotonically decrease as more actions are taken.

MITRE © 2025 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 13



Methodology
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Overview of methodology

The approach is a 4-step dynamic program.
Compute rewarding sets.

2. Generate a full graph: Explore states and available actions that have potential
for increased reward.

3. Evaluate the reduced graph: Combination of all subtrees that maximize
expectation of reward.

4. Find the optimal decision tree: The subtree within the reduced graph that
maximizes a secondary objective function.

Steps 3 and 4 use conventional dynamic programming to find the optimal strategy.
So will focus on Steps 1 and 2 in this talk.
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What would naive dynamic programming (DP) do?

It would simply explore ALL states available to determine the optimal strategy,
within the state set (the full graph) below:

Sra = {s > Sroot € Sra; if s € Spa, s+ A € Spg, V(p,A) €1, Vr € R(S)}

Colloquially, starting at root state s,oot, it would recursively apply all available
actions at all states until no actions remain. This is expensive.

What if we can reduce the size of the full graph, while
retaining optimality?

MITRE © 2025 THE MITRE CORPORATION. ALL RIGHTS RESERVED.
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We can accelerate DP using knowledge of rewards and
the action dependency graph.

If we have a set of states §, that we know give rewards, we can simply restrict
ourselves to trying actions that have potential for increased reward. We can
identify such trajectories to rewards, called a rewarding set

P{StootsSk) — {{(7",])} ! Sk = Sroot T Z Z A]},

(’r)j)ep(sroot ,Sk) (p_j ,Aj)g’l"

. | \

Rewarding set from — ] actions and associated outcomes so that
root state to end state we reach the end state from the root state

How do we find rewarding sets? Solve a network flow problem
through the action dependency graph.

MITRE © 2025 THE MITRE CORPORATION. ALL RIGHTS RESERVED.
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MITRE

Example of computing (dominating) rewarding sets

Figure 2: Action dependency graph for illustrative example.

For a reward of 10, {(a1,2), (az,2), (as,2), (as,2)}
is one of the rewarding sets.
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All (dominating) rewarding sets

Figure 2: Action dependency graph for illustrative example.

1. For a reward of 50, {(a1,2), (a4,2), (as,2)},

2. For a reward of 10, {(aq,2), (a2, 2), (a4, 2), (ag, 2)},
3. For a reward of 10, {(a2, 2), (as,2), (a4, 2), (ag,2)},
4. For a reward of 100, {(as,2), (a7,2)}}.

MITRE © 2025 THE MITRE CORPORATION. ALL RIGHTS RESERVED.

19



Tradeoffs of the rewarding set approach for DP

= |f there are few rewarding states,
= Gets you the optimal strategy much quicker.
= |f there are many rewarding states,
= Potentially makes the problem more tractable, or
= Allows quick heuristic solutions only looking at most promising reward states.

= Can also expand an existing strategy, as time allows, augmenting the search
by allowing more reward states.

Downside: Need to be able to compute rewarding states and/or sets a priori

(which we do by interpreting the action dependency graph).
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Results

MITRE
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Examples of full, reduced graph and tree

4 exfiil@eb 6 @ @2 fvEd 2

Full graph: Reduced graph: Optimal decision tree:
Fast enumeration of Determination of all Final strategy via
alternatives equally good strategies secondary optimization
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Naive DP
Benchmarks
D (Sroot ) Tiotat  |Src| |Sra| [Sorl
0.466594 9466 6758 314

0.181530 Noees g ek = We generated random

0.026389 83854 525 76 decision problems with N
‘ 0.021860 47320 760 90

actions and B budget.

= Most problems could not
be solved by naive DP

N P(Sroot ) Tiotal |Sra| |Sra| IP(Sroot )| within a 4000s time limit.
25 15 0.000243 4031.24 2518548 2239364 20
20 15 0.000971 2855.48 1954163 1820303 28 . :
20 15 0.038782 246.94 164758 105235 13 Rewarding sets speed up
20 15 0.034325 133.72 87950 76747 12 DP solution time

15 15 0467120 20.24 13892 13892 32 12 .

15 0.466594 [ 10.95 8186 6758 12 dramatically but

20 1( 8.43 8416 1312 27 :

17 10 0.181530 T 8599 3188 12 nonuniformly (except for
20 10 0026389 [ 327 | 2237 217 12 the smallest problems).

25 10 0.000227 2.8 1011 102 20

20 10 0.021860 2.36 1673 344 . 10
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The approach scales linearly with respect to number of
states explored (with varying speed-ups).

Log-log line of best fit:
l”gln(Ttnmi) = ('.99»“()};“,( |Sl"(:“ =
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Speed ups vary
based on problem
structure.

Number of states in naive full graph

103 4& ———— S———
— l():‘ l()l l().')

e ' |
Number of states in accelerated full graph
Number of states in full graph (|Sp¢|) < grap
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Live GUI Demo
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Conclusion

= [ inear chains of actions doesn’t account for failure probabilities

= Using modern methods can input potential actions and derive best tree of
decision which most impact mission while accounting for
= Probability of actions failing
= Prerequisites and preclusions of actions
= |mpact of individual actions if successful
= New intel as it is discovered

= Fast, globally optimal and scalable

= Applicable to cyber, wargaming, healthcare

MITRE © 2025 THE MITRE CORPORATION. ALL RIGHTS RESERVED.
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Efficient Tree Generation for Globally Optimal Decisions under Probabilistic Outcomes*

Dr. Berk Ozturk, Dr. She'ifa Punla-Green, Dr. Les Servi

EXECUTIVE SUMMARY: Many real-world problems require making sequences of decisions
where the outcomes of each decision are probabilistic and uncertain, and the availability of
different actions is constrained by the outcomes of previous actions. There is a need to generate
policies that are adaptive to uncertainty, globally optimal, and yet scalable as the state space
grows. In this paper, we propose the generation of optimal decision trees, which dictate which
actions should be implemented in different outcome scenarios, while maximizing the expected
reward of the strategy. Using a combination of dynamic programming and mixed-integer linear
optimization, the proposed methods scale to problems with large but finite state spaces, using
problem-specific information to prune away large subsets of the state space that do not yield
progress towards rewards. WWe demonstrate that the presented approach is able to find the
globally optimal decision tree in linear time with respect to the number states explored.

*PRS: Case 25-0045. Submitted to European Journal on Operations Research, Apr, 2025
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