
Robust Optimization
Seminar

Berk Öztürk

03/05/2024

1



Introductory Remarks
• About me: 

• Optimizer / Operations Research Analyst at MITRE

• What I do: optimization, data science, simulation and modeling.

• PhD, MIT AeroAstro, 2022

“Global and Robust Optimization for Engineering Design”

Advisor: Prof. Dimitris Bertsimas. 

TAed Robust Optimization in Spring 2021. 

• Please feel free to ask questions during the talk. I will be asking you questions too!

[Paraphrasing mercilessly from lecture notes of MIT’s 15.094 RO course, taught 
Spring 2021 by Dimitris Bertsimas and Dick den Hertog (and TAed by me). ]
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What to expect from today

• Theory of robust optimization (RO), which
• turns stochastic optimization problems into deterministic ones,
• is general and practical for a range of decision problems,
• Provides guarantees of constraint satisfaction under uncertainty. 

• Some demonstrations of the need for RO, and derivations of key 
concepts. 

• Suggestions about how you can use RO in your own work. 

• A real-time demonstration of a facility location problem under 
uncertainty. 
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Uncertainty arises from:

• Measurement errors,
• Blood pressure, temperature …

• Estimation/prediction errors,
• Demand, truncation error …

• Implementation errors,
• Voltages, engineering tolerances …

Parametric uncertainty is ubiquitous in 
decision/design problems. 

Decision variables

Uncertain parameters
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^ “Flaw of Averages”, Sam Savage, 2012.
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Here’s a scenario* to avoid…

Optimization under uncertainty (OuU) is critical to protect 
against adverse outcomes!

*From 15.094 lecture notes, 2021.6



My original motivation: Legacy aerospace design methods do 
not adequately consider the risk-performance tradeoff. 
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Max zero-
fuel weight

Max takeoff 
weight

Max fuel 
capacity

There is no such thing 
as a free lunch. 
Conservative margins leave 
performance on the table. 

How about:
- Technological 

capabilities?
- Manufacturing quality?
- Regulatory 

environment? 



Why don’t we tackle the following 
problem directly? 

Note: there is no uncertainty in the objective function, 
without loss of generality (wlog). 

Answer: infinitely-many constraints can be generated 
with the infinite number of possible realizations of u.  
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One method to approximate the problem is 
through stochastic optimization.  

• Problem: Even low-D problems with nice distributions cause 
computational trouble. The Curse of Dimensionality. 

• Jargon: Propagating distributions through constraints via convolutions and high-dimensional quadrature 
is computationally expensive. 

Parameter 
distributions

Fixed 
parameters
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RO is an alternative for optimization under 
uncertainty that is tractable and deterministic. 
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RO makes sure all 
constraints are feasible 
for all parameter 
outcomes from an 
uncertainty set, while 
minimizing the worst-
case objective.



Important notes and intuitions

• Robust optimization problem is robustified constraint-wise:
• Each constraint protects against all possible outcomes, allowing different uncertain 

outcomes for each constraint.

• Thus, depending on the structure of the uncertainty, RO can be 
conservative, or not!

• RO makes mild assumptions about what the uncertainty set can be.

• RO is deterministic. I will demonstrate in a second!
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Robust (Linear) Optimization 
Theory
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Constraint under uncertainty

Uncertain 
coefficients 

Decision 
variables

can be transformed via the max,
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z is adversarial to x, so cannot solve in 
one shot except through reformulation.



Say our uncertainty comes from a box, i.e. bounded by the 
inf-norm hypercube… can we find a robust counterpart? 

Math identity: Separating

Math identity: Rearranging

Optimization: In this case intuition.

Math identity: Rewriting as norm

Robust counterpart does not contain z 14



Practical RLO questions (1/3)
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Practical RLO questions (2/3)
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Practical RLO questions (3/3)

Takeaway: Added constraints can substantially affect the tractability of the robust 
counterpart!
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Let’s try another. How about polyhedral 
uncertainty? 
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Robust counterparts summary
• Started with infinite-dimensional problem under uncertainty. 

• Took the max of the left-hand-side with respect to uncertain parameters. 

• Did some math magic to end with deterministic optimization, devoid of 
uncertain parameters!

Note: You do not have to derive these yourself, unless your uncertainty lies in an 
exotic set. Many robust counterparts exist in the literature. 

Cautions:

• Explicit robust counterparts may or may not exist (but there are 
workarounds).

• If they exist, it’s not obvious that they are tractable (but very often they are). 
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Some examples of robust counterparts for 
linear constraints

(convex quadratic 
optimization)

(linear optimization)

My personal 
favorite. Linear 
and tractable. 
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New research allows for finding robust counterparts for 
almost any combination constraint and set. 

• For convex constraints and sets, it’s called Reformulation-
Perspectification. 

• If you are comfortable with mathematics of convexity, please 
check out the paper: 

• Bertsimas, Dimitris, et al. "Robust convex optimization: A new 
perspective that unifies and extends." Mathematical 
Programming 200.2 (2023): 877-918.

• For uncertainty sets with discrete partitions, see below: 
• Bertsimas, Dimitris, and Iain Dunning. "Multistage robust mixed-

integer optimization with adaptive partitions." Operations Research 
64.4 (2016): 980-998.
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Sometimes, we don’t even know we are 
using robustness, when we are!
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Anyone use LASSO for linear regression (LR)? 
What’s the benefit of LASSO over unregularized  
linear regression? 

vs. 
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LASSO is robust regression (not sparse). (1/2) 

*H. Xu, C. Caramanis, and S. Mannor. Robust regression and Lasso. http://arxiv.org/abs/0811.1790v1, 2008. 
Also submitted to NeurIPS.  24



LASSO is robust regression (not sparse). (2/2) 

*H. Xu, C. Caramanis, and S. Mannor. Robust regression and Lasso. http://arxiv.org/abs/0811.1790v1, 2008. Also submitted to NeurIPS.  
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How can you use robust optimization in 
your work? 
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Option 1 (medium-hard difficulty): Optimize 
directly using the robust counterpart. 
• Steps

• Write your optimization problem with no uncertainty. 
• Determine your uncertainty set, ideally using some data or model. 
• Look up the robust counterpart online (or derive it ). 
• Rewrite the constraints with uncertainty using the robust counterpart 

(and additional auxiliary variables and constraints). 
• Solve. 

• (+) Fast, deterministic, one-shot solutions. 

• (-) Can still be computationally difficult. Lots of work up front to 
write robust counterparts. 
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Option 2 (easy-medium difficulty): 
Use adversarial robust optimization. 
• Steps:

• Solve the nominal problem, with no uncertainty

• Repeat: 
• For each constraint:

• Solve the inner maximization problem for worst-case parameters u from the 
uncertainty set, for fixed decisions x. 

• If constraints are violated, use those parameters to add cuts (i.e. perturb the original 
constraints and add them  to the existing constraints).

• Terminate if no cuts are added! 

• Re-solve the problem for x with all accumulated cuts. 

• (+) Can be applied to any mixed-integer convex optimization problem, without 
taking the robust counterpart, under any uncertainty set. 

• (-) Computationally expensive. Check out this paper for a comparison: Bertsimas, Dimitris, Iain 
Dunning, and Miles Lubin. "Reformulation versus cutting-planes for robust optimization: A computational 
study." Computational Management Science 13 (2016): 195-217.
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Facility Location Demo
(can find on my GitHub, 
ROdemos/homeworks/HW4 at master · 1ozturkbe/ROdemos · GitHub) 
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Problem setup (1/4)

• N = 10 possible facility locations, with supply capacity limits. 

• M = 50 customers, with demand of 50.

• Question we are answering: How many facilities should we 
construct, to serve customer demand while minimizing cost? (A 
MILO!)

• Cost = facility fixed costs + transport costs (distance * flow).

• Customers may be served by multiple  facilities. 

• There is budget uncertainty on demand: 
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Problem setup (2/4)

Customer-wise supply and 
demand constraint

Facility-wise capacity constraint

Transport variables

Facility location variables

Objective with variable and 
fixed costs
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Problem setup (3/4)
Question: Notice anything that 
could be problematic with this 
formulation? 

Uncertainty is spread over 
many constraints, thus 
very conservative. (This will 
be partially mitigated by 
adaptivity, so stay tuned!)
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Problem setup (4/4)

Question: Can you tell me THE 
BEST way to reduce 
conservativeness in this 
formulation? 

Put the uncertainty in the objective 
through the Lagrangian! Now have 
a convex quadratic objective with a 
convex uncertainty set. But we will 
assume we NEED to satisfy demand 
exactly.
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Addressed via four methods. 
• Nominal (no uncertainty)

• Robust (static transportation decision rules)

• Adaptive (affine transportation decision rules w.r.t uncertainty)
• We fix facility locations before demand is realized, then make an 

affine transportation decision based on that realized demand 

• Adversarial adaptive (affine transportation decision rules w.r.t 
uncertainty, via cuts)
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Quick intro to adaptive robustness
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Adaptive RO has high computational cost 
(especially depending on solver).

Solution time: 
Adaptive takes 40s with 
Gurobi, adversarial 2 
hours or so.  

With GLPK, 40 minutes 
adaptive, adversarial >24 
hours. 
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Scales of 
problems

~40 minutes
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The price of robustness can be low!

Nominal (no uncertainty) Adaptive

We only increased our cost by 7.5%, to protect against a huge 
amount demand uncertainty (more precisely up to 14% of total 
across the 50 customers)!
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Engineering Design under 
Uncertainty via Robust 
Optimization 
(from PhD thesis work)
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Application: aircraft design that captures 
important multidisciplinary tradeoffs.
• Unmanned, gas-powered aircraft

• Without uncertainty: 176 variables and 154 constraints

• Monolithic: optimizes aircraft and flight trajectory concurrently 
through disciplined signomial programming (nonconvex) form
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Fuselage
• Fuel and payload

• Profile drag

Wing
- Structure

- Fuel volume

- Profile drag

- Stall constraint

Engine
- Data-based sizing
- Lapse rate
- BSFC fits
- T/O and TOC 

constraints



First, we determine uncertain parameters and 
variances, based on engineering intuition. 
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The uncertainty is defined by box and ellipsoidal 
sets. 
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Primary result: RO mitigates probability of 
constraint violation under uncertain outcomes, 
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and is less conservative than designs with margins.

Margins, PoF
Box, PoF
Ellipsoidal, PoF
Margins, cost
Box, cost
Ellipsoidal, cost
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*100 MC simulations over 3σ truncated Gaussians
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