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Introductory Remarks

« About me:
« Optimizer / Operations Research Analyst at MITRE
« What I do: optimization, data science, simulation and modeling.
« PhD, MIT AeroAstro, 2022
“Global and Robust Optimization for Engineering Design”
Advisor: Prof. Dimitris Bertsimas.
TAed Robust Optimization in Spring 2021.

* Please feel free to ask questions during the talk. I will be asking you questions too!

[Paraphrasing mercilessly from lecture notes of MIT’s 15.094 RO course, taught
Spring 2021 by Dimitris Bertsimas and Dick den Hertog (and TAed by me). ]



What to expect from today

 Theory of robust optimization (RO), which

* turns stochastic optimization problems into deterministic ones,
« is general and practical for a range of decision problems,
 Provides guarantees of constraint satisfaction under uncertainty.

» Some demonstrations of the need for RO, and derivations of key
concepts.

» Suggestions about how you can use RO in your own work.

* A real-time demonstration of a facility location problem under
uncertainty.



Parametric uncertainty is ubiquitous in
decision/design problems.

Decision variables
min fo(z)
gt Lleu) =0, Yuell, i=1,:.:;n

Uncertain parameters
Uncertainty arises from:

« Measurement errors,
* Blood pressure, temperature ...

 Estimation/prediction errors,
e Demand, truncation error ...

« Implementation errors,
* Voltages, engineering tolerances ... . | 4




BEWARE

The Flaw of
Averages

~ “Flaw of Averages”, Sam Savage, 2012.



Here’s a scenario® to avoid...

§TX — —15.?9081)(326 — 8.598819X827 - 1.88789)(323 == ].362417)(329 — ].526049)(330
—0.031883xg49 — 28.725555xg50 — 10.792065xg51 — 0.19004xg52> — 2.757176xg53
12.290832xg54 + 717.562256xg55 — 0.057865xg56 — 3.785417xg57 — 78.30661xgss
—122.163055)(359 — 6‘46609)(36[} — 0.483?1)(351 = 0.615264)(862 = 1.353783)(363
—84.644257)(364 — 122.459045X355 — 43-15593X366 — 1.?12592X370 — 0.40159?)(371
+xggo — 0.96049xg9g — 0.946049x016

> b = 23.387405

Suppose: accuracy is 0.1%:

(%) |ai™e — 3;| < 0.001]3;|.

Worst case: the constraint can be violated by as much as 450%:

min  (a™)" x— b= —128.8 ~ —4.5b.

atruesatisfies ()

Optimization under uncertainty (OuU) is critical to protect
against adverse outcomes!

*From 15.094 lecture noteS, 2021.



My original motivation: Legacy aerospace design methods do
not adequately consider the risk-performance tradeoft.
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There is no such thing
as a free lunch.
Conservative margins leave
performance on the table.

How about:

Technological
capabilities?
Manufacturing quality?
Regulatory
environment?



Why don’t we tackle the following
problem directly?

min fo(z)
st Kle.uw) =<0 Nuell, 1=1,;:::n

Note: there is no uncertainty in the objective function,
without loss of generality (wlog).

Answer: infinitely-many constraints can be generated
with the infinite number of possible realizations of u.



One method to approximate the problem is
through stochastic optimization.

Fixed Parameter
parameters distributions
.} Opti mization Uncertain parameter 1 StOChastIC
Parameter 1 ‘under /\ optimization
| > certainty.? l} Uncertain parameter 2
Parameter F3 l}-
| Model Model
J
Parameter 3 / _‘_,.-r-"" Uncertain parameter 3 / ,.,.—-—""""'-'.'ll

* Problem: Even low-D problems with nice distributions cause
computational trouble. The Curse of Dimensionality.

« Jargon: Propagating distributions through constraints via convolutions and high-dimensional quadrature
is computationally expensive.



RO is an alternative for optimization under
uncertainty that is tractable and deterministic.

min fy(x)
o e S0 =L RO makes sure all
" constraints are feasible
us for all parameter
u; Robust 1 outcomes from an
uw | objective  UNCertainty set, while
o Model minimizing the worst-
eg. |u| <T case objective.

/ +— design space™
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Important notes and intuitions

« Robust optimization problem is robustified constraint-wise:

« Each constraint protects against all possible outcomes, allowing different uncertain
outcomes for each constraint.

min f,(x)
st max LlEu) <0, s=1,.. .,
ucld
» Thus, depending on the structure of the uncertainty, RO can be
conservative, or not!
« RO makes mild assumptions about what the uncertainty set can be.

RO is deterministic. I will demonstrate in a second!



Robust (Linear) Optimization
Theory



Constraint under uncertainty

(CL—I—PZ)TZC S b, \V/Z c Za
—

Uncertain Decision

coefficients  variables

can be transformed via the max,

max(a + Pz)tx < b.
z€EZ

z 1s adversarial to x, so cannot solve in
one shot except through reformulation.



Say our uncertainty comes from a box, i.e. bounded by the
inf-norm hypercube... can we find a robust counterpart?

Math identity: Separating

Math identity: Rearranging

zilzi1<p & = ) p=oc

Optimization: In this case intuition.

Math identity: Rewriting as norm

Robust counterpart does not containz € Z! |,



Practical RLO questions (1/3)
(a+ P2) 'z < b,V{z:||z|]lc < p} became a’ x + p||Pz||; < b.
Questions:

1. The robust counterpart is what kind of optimization problem?

2. What is the complexity of this optimization problem? (Hint:
can you estimate the number of constraints? Assume z € R",
u e R™.)



Practical RLO questions (2/3)
(a+ P2) 'z < b,V{z:||2|]|c < p} became a’z + p||Pz||; < b.
Questions:

1. The robust counterpart is what kind of optimization problem?
A linear optimization problem!

2. What is the complexity of this optimization problem? (Hint:
can you estimate the number of constraints? Assume z € R",
u € R™.) m extra variables and 2m linear constraints
are required, on top of the n original variables and
constraint.
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Practical RLO questions (3/3)

(a+ P2)'z <b,Yz : ||2]|e < p became a’z + p||Pz||, < b.

Let’s explicitly show the m extra variables and 2m linear con-
straints that make up the robust counterpart:

CLTZE—F,OZ(S@'EZ),

i€|m]
6 > P'x,Vi € |m|,
6; > —Pla, Vi € |ml,
o€ R™.

Takeaway: Added constraints can substantially affect the tractability of the robust

counterpart!
17



Let’s try another. How about polyhedral
uncertainty?

Constraint with uncertain z in a polyhedron:
(a+ Pz)Ta? <b,Vz:Dz <d.

Take the worst-case,

afz 4+ max (PTx)Tz<.
z: Dz<d

Use the dual!

max (P'z)’z = min dy.

z: Dz<d DT y=PT g ir>0
Replace max with min:

otz + min dly < b.

DTy=PTz,y>0 B

Rearrange:
alz+d'y <bDVy=Plzy>0.

(1)

(2)

18



Robust counterparts summary

e Started with infinite-dimensional problem under uncertainty.
» Took the max of the left-hand-side with respect to uncertain parameters.

 Did some math magic to end with deterministic optimization, devoid of
uncertain parameters!

Note: You do not have to derive these yourself, unless your uncertainty lies in an
exotic set. Many robust counterparts exist in the literature.

Cautions:

 Explicit robust counterparts may or may not exist (but there are
workarounds).

« If they exist, it’s not obvious that they are tractable (but very often they are).



Some examples of robust counterparts for
linear constraints

(G+Pz)'x< b, ¥zeclZ.

Unc. set Z Robust Counterpart Tractability

Box |z]lee < p a'x+p||PTx|l1 < b LO

Ellipsoidal z]l2 < p 3" x4+ p||P"x|2 < b CQO
Tx+dTy <b

Polyhedral Dz < d D"y = P"x LO
y=20

s
Budget 1]l < p 3" x+pllylli + TP x — y|loo < b LO
Izl <T

(convex quadratic
optimization)

(linear optimization)

 —

My personal
favorite. Linear
and tractable.



New research allows for finding robust counterparts for
almost any combination constraint and set.

« For convex constraints and sets, it’s called Reformulation-
Perspectification.

* If you are comfortable with mathematics of convexity, please
check out the paper:
 Bertsimas, Dimitris, et al. "Robust convex optimization: A new

perspective that unifies and extends." Mathematical
Programming 200.2 (2023): 877-918.

 For uncertainty sets with discrete partitions, see below:

 Bertsimas, Dimitris, and Iain Dunning. "Multistage robust mixed-
integer optimization with adaptive partitions." Operations Research
64.4 (2016): 980-998.
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Sometimes, we don’t even know we are
using robustness, when we are!



Anyone use LASSO for linear regression (LR)?
What'’s the benefit of LASSO over unregularized
linear regression?

mﬁinHy — XB|lq + plBllr v mBiIlHy — XBllq



LASSO is robust regression (not sparse). (1/2)

Let’s derive it!

min max |ly — (X + AX)B]l2. (1)

Let’s assume that U is feature-wise uncorrelated:

U-{(&l,,ém)|5z||2§cz, ‘v’zEm} (2)

Separate, with a relaxation:

min max —(X4+(01,...,0m < min —XB||a+ max :0; .
B (515---a5m)=|\5¢||2§cz”’y S NA: p {y Al (51,...,5m)1||5i||2sci;Hﬁ HQ}

(3)

*H. Xu, C. Caramanis, and S. Mannor. Robust regression and Lasso. http://arxiv.org/abs/0811.1790v1, 2008.
Also submitted to NeurIPS. 24



LASSO 1s robust regression (not sparse). (2/2)

Recall our upper bound on the original robust optimization problem:

mgn{ly — XBlz + max =~ > ||Bi5i||2} (1)

(511---;67)7,):”512”2 ’L:]_
Let’s add an additional restriction on the ¢;’s:

y—Xp :
e, if X
8; := —c;sign(B;)u, where u = { V=5l _3’7& ‘5 |
any vector with unit 12 — norm otherwise

(2)

This is a type of induced norm that still obeys ||d;||2 < ¢;. It also reduces to

18:0:||2 = || — Bicisign(Bi)ul|2 = c;|B4]. (3)

There is a little more derivation in the paper™®, but LASSO is equivalent to the
above robust optimization problem under the induced norm:

m

mﬁin||y—X,6||2+p||B||1 <—> ngnHy—XBngLZ ci|Bi|, when c; = p,Vi € [m]! (4)
1=1

*H. Xu, C. Caramanis, and S. Mannor. Robust regression and Lasso. http://arxiv.org/abs/0811.1790v1, 2008. Also submitted to NeurIPéiLS



How can you use robust optimization in
your work?



Option 1 (medium-hard difficulty): Optimize
directly using the robust counterpart.

* Steps
« Write your optimization problem with no uncertainty.
« Determine your uncertainty set, ideally using some data or model.
» Look up the robust counterpart online (or derive it &)).

» Rewrite the constraints with uncertainty using the robust counterpart
(and additional auxiliary variables and constraints).

« Solve.
 (+) Fast, deterministic, one-shot solutions.

* (-) Can still be computationally difficult. Lots of work up front to
write robust counterparts.



Option 2 (easy-medium difficulty):
Use adversarial robust optimization.
 Steps:

* Solve the nominal problem, with no uncertainty
* Repeat:
» For each constraint:

* Solve the inner maximization problem for worst-case parameters u from the
uncertainty set, for fixed decisions x.

« If constraints are violated, use those parameters to add cuts (i.e. perturb the original
constraints and add them to the existing constraints).

« Terminate if no cuts are added!
* Re-solve the problem for x with all accumulated cuts.

* (+) Can be applied to any mixed-integer convex optimization problem, without
taking the robust counterpart, under any uncertainty set.

* (-) Computationally expensive. Check out this paper for a comparison: Bertsimas, Dimitris, Iain
Dunning, and Miles Lubin. "Reformulation versus cutting-planes for robust optimization: A computational
study." Computational Management Science 13 (2016): 195-217.



Facility Location Demo

(can find on my GitHub,
ROdemos/homeworks/HW4 at master - 10zturkbe/ROdemos - GitHub)




Problem setup (1/4)

* N = 10 possible facility locations, with supply capacity limits.
* M = 50 customers, with demand of 50.

 Question we are answering: How many facilities should we
construct, to serve customer demand while minimizing cost? (A
MILO!)

* Cost = facility fixed costs + transport costs (distance * flow).

 Customers may be served by multiple facilities.

ldllo <p=1,
d|l, <T =5.

* There is budget uncertainty on demand: (

N\

g



Problem setup (2/4)

min
y(-),x

s.t.

Z Z CijYij + Z fix;

’L_].j 1

Zyw > vd € D,|Vj € [m],

Zyij < s;xi, Vi€ [n],
j=1

Yij = 0, V1 € [n], Vj - [m},
x < {0,1}".

Objective with variable and
fixed costs

Customer-wise supply and
demand constraint

Facility-wise capacity constraint

Transport variables
Facility location variables



Problem setup (3/4)

min
y(-),x

s.t.

Z Z CijYij + Z fix;

’L_].j 1

Zyw > vd € D,|Vj € [m],

Zyij < s;xi, Vi€ [n],
j=1

Yij = 0, V1 € [n], \V/j - [m},
x < {0,1}".

Question: Notice anything that
could be problematic with this
formulation?

Uncertainty is spread over
many constraints, thus
very conservative. (This will
be partially mitigated by
adaptivity, so stay tuned!)



Problem setup (4/4)

min i Yis + atz + A Zyw d;,Vj € |m||| ,Vd € D,
y(- )mm Cisllis oE t, 5
m®=1 7=1
s.t. 8 X Bilba, V’L € 7’% Question: Can you tell me THE
s.t. j= Yij = dj) Vd € Vj E BEST way to reduce
i=1 : : conservativeness in this
Yij 7 0, Vi [nl, Vi€ [m] formulation?
£ 6} py%}g siTi, Vi€ [n], Put the uncertainty in the objective
= through the Lagrangian! Now have
yi; >0, Vie n], Vj € [m], a convex quadrfltlc objective w1t.h a
- convex uncertainty set. But we will
x € {0,1}". assume we NEED to satisfy demand

exactly.



Addressed via four methods.

* Nominal (no uncertainty)
» Robust (static transportation decision rules)

 Adaptive (affine transportation decision rules w.r.t uncertainty)

» We fix facility locations x before demand is realized, then make an
affine transportation decision based on that realized demand d.

{y=u+Vd, dj =dj + (Pz);, V ||zllec < p,|l2]l1 <T}.

 Adversarial adaptive (affine transportation decision rules w.r.t
uncertainty, via cuts)



Quick intro to adaptive robustness

max A(d)z + By(d) <b. (1)
deD
A is an uncertain matrix, x are the first-stage decisions, and y(d) are the decision
rules, which we will assume are linear for our application: y(d) = u + Vd.
Assuming budget uncertainty, taking the robust counterpart has the same pro-
cess!

max (a + Pd)'x + BT (u+Vd) <b. (2)

c

alz + Bl u+ max d' Ptz +d"' BVt <. (3)
c

If d is in the budget set, i.e. ||d||cc < p, and ||d||1 < T, we can simply use the
robust counterpart table to rewrite as

a'z+ B u+pllélloe + TlIE]lL <b, €= PPz + BV, (4)
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Adaptive RO has high computational cost
(especially depending on solver).

100 -

025

o000k *®

Total cost: 36.633

0.0

0.2

Solution time:

Adaptive takes 40s with
Gurobi, adversarial 2
hours or so.

With GLPK, 40 minutes
adaptive, adversarial >24
hours.



include("nominal.j1")
GLPK Simplex Optimizer 5.0
60 rows, 510 columns, 1810 non-zeros :E; ]- ni?
TMTEGER OPTIMAL E['lLlITI['H' FI"1L|['JI:] Ca es O
Facility cost: 21.

'-ar1:po;'tatin'ﬁr1 cr‘mt l.i ?-'lnnh-'ta 2753 prOblemS

©.522297 seconds (397. 7“ k allnLatlnna 33.663 MiB, 32.59% compilation time)

@time include("robust.jl1")
5LPK Simplex Optimizer 5.0
@860 rows, 5560 columns, 23560 non-zeros
NTEGER OPTIMAL SOLUTION FOUND
Facility cost: 34.356705836087979
ransportation cost: 16.2223 0e8492
11t = nothing
3.0854248 seconds (1.15 M allocations: 78.755 MiB, ©.54% gc time, 10.28% compilation time)

julia> include(”adaptive.jl™)

GLPK Simplex Optimizer 5.8

112761 rows, 82172 columns, 455832 non-zeros

INTEGEH OPTIMAL SOLUTION FOUND

2388.518484 seconds (3.48 M allocations: 196. MiB, @.08% gc time, @.08% compilation time)
Facility cost: 21.427882592678976

Transportation cost: 13.355189872484778




The price of robustness can be low!

Total cost: 34.066 Total cost: 36.633

1.0 A

0.8

0.6 1

0.4 1

0.2 A

0.0 A

Nominal (no uncertainty) Adaptive
We only increased our cost by 7.5%, to protect against a huge
amount demand uncertainty (more precisely up to 14% of total
across the 50 customers)!
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Engineering Design under
Uncertainty via Robust
Optimization

(from PhD thesis work)



Application: aircraft design that captures
important multidisciplinary tradeofts.

« Unmanned, gas-powered aircraft
« Without uncertainty: 176 variables and 154 constraints

* Monolithic: optimizes aircraft and flight trajectory concurrently
through disciplined signomial programming (nonconvex) form

Wing Fuselage Engine
Structure » Fuel and payload - Data-based sizing
Fuel volume  Profile drag - Lapserate
Profile drag - BSFCfits

- T/O and TOC

Stall constraint constraints



First, we determine uncertain parameters and
variances, based on engineering intuition.

Table 3.1: Parameters and uncertainties (increasing order)

Parameters Description Value % Uncert. (30)
e span efficiency 0.92 3
L air viscosity (SL) 1.78 x 107> kg/(ms) 4
0 air density (SL) 1.23 kg/m3 H
Cr, sanx stall lift coeflicient 1.6 5
k fuselage form lactor 1.17 10)
C' ref relerence Tuselage skin friction lactor (0.455 10
Pp payload density 1.5 1{g/1113 10
N ultimate load factor 3.3 15
| takeoll speed 35m/s 2()
Wy payload weight 3000 N 2()
Woses stie wing structural weight coefficient 2 x 1075 1/m 20)
W oot sari wing surface weight coeflicient 60 N/m? 20)

41



The uncertainty is defined by box and ellipsoidal
sets.

U5 U
’ =1, 36;=30; =1 !

' = 0.8, 303 =305 =1

Ui
L =:1, 30 =025 §(T_f,' = ()73
(a) Example Loo or box sets. (b) Example L2 or ellipsoidal sets.

Figure 3-5: ' defines the overall size of norm uncertainty sets, while 30 defines the relative
size of the set in each uncertain parameter.



Primary result: RO mitigates probability of
constraint violation under uncertain outcomes,

1.0
E 300 |
- 0.8 o
! | .
L -
[@)] —
O 280 ,f
= -0.6
3 d
—= 0.4 o
"5‘ Margins, PoF ©
L0
= 240 - ====Box, PoF o)
4 = Ellipsoidal, PoF D‘:
3 Margins, cost - 0.2
) 220 - Box, cost
Ellipsoidal, cost
—— e
1 1 1 1 1 1 0.0
0.0 0.2 0.4 0.6 0.8 1.0

Uncertainty Set Scaling Factor I

and is less conservative than designs with margins.
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Table 2: SP Aircraft Optimization Results, for I' =1

Free variable Deseription Units No Uncert.  Margins Box Elliptical
L/D mean lift-to-drag ratio - 33.6 23.6 25.1 2%
AR aspect ratio - 24.6 13.3 13.0 16.3
Re Reynolds number = 1.54 x 105 2.65 x 105 3.03 x 105 250 x 10°

S wing planform area m? 13.6 32.8 32.0 28.1
V mean flight velocity m/s 41.6 37.3 38.9 38.4
Thaight time of flight hr 20.1 22.4 214 L s
W wing weight N 2830 4760 4800 4480
W stre wing structural weight N 2010 4760 2670 2620
|| [— wing skin weight N 820 2170 2120 1860
Wiuse fuselage weight N 250 314 288 279
Vk avail total fuel volume m® 0.0759 0.146 0.154 0.136
VE fuse fuselage fuel volume m? 0.0394 0 0 0.0159
Vevrmz wingfuelvohume et 00365 0167 0154 0420
Objective metric Description Units |No Uncert.| @ Margins Box Elliptical
Objective total fuel weight N 608 1170 1240 1090
E[Objective] expected total fuel weight N 572 964 976 856
a[Objective] std. dev. of fuel weight N 9 32 32 29
P[failure] probability of failure % 04 0 0 0

*100 MC simulations over 30 truncated Gaussians




Retferences / resources

ROdemos https://github.com/10zturkbe/ROdemos

This repository contains a number of practical and tractable examples of robust optimization (RQ), applied to
problems as diverse as experimental design and multicommodity network flows. They are written in Julia, using the
JuMP modeling environment. The models accept a variety of optimizers compatible with JUMP, but Gurobi is the
default, available with a free academic license.

Good papers on this topic

Bertsimas, Dimitris, Iain Dunning, and Miles Lubin. "Reformulation versus cutting-planes for robust optimization: A computational study." Computational
Management Science 13 (2016): 195-217.
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2045(03)01230-0

Bertsimas, D., Brown, D. B., & Brown, D. B. (2009). Constructing Uncertainty Sets for Robust Linear Optimization. September 2019.
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Bertsimas, Dimitris, et al. "Robust convex optimization: A new perspective that unifies and extends." Mathematical Programming 200.2 (2023): 877-918.

H. Xu, C. Caramanis, and S. Mannor. Robust regression and Lasso. http://arxiv.org/abs/0811.1790v1, 2008. Also submitted to NeurIPS.

Mediocre papers on this topic

Oztiirk, B., & Saab, A. (2021). Optimal Aircraft Design Decisions Under Uncertainty Using Robust Signomial Programming. AIAA Journal, 59(5), 1-13.
https://doi.org/10.2514/1.j058724



