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Aerospace engineering is only 120 years old, but been 
instrumental for expanding human frontiers. 
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Wright Flyer, 1903 - First heavier-
than-air flight on Earth featuring 
efficient, high-speed propellers and 
lightweight propulsion. 

Ingenuity, 2021- First heavier-than-
air flight on Mars featuring 
efficient, high-speed propellers and 
lightweight propulsion. 



Aerospace concepts are limited by the 2nd Law!
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Commercial aerospace 
products have had a rate of 
improvement of 3.3% since 
1950s.

For the configuration and 
technologies, it becomes 
harder to squeeze 
performance from each unit 
of energy.  

US DOT, Bur. Transp. Stat., Off. Airl. Inf. 1999. Form 41 Schedule P-5.2 and Schedule T-2 for 
1968–98. Washington, DC: Dep. Transp.



Design tools are critical for novel, increasingly 
complex concepts where experience is lacking. 
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Virgin Hyperloop

Aurora D8 Electra.aero



Improved computation has yet to meet 
challenges in design. 
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Aerospace literature has primarily focused on:
Gradient-based methods
(eg. Quasi-Newton descent)

Heuristic methods 
(eg. genetic algorithm)
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• Limited to local optimization, often of 
a few disciplines or subsystems. 

• Requires a good initial guess.

• Limited to low-dimensional 
optimization.

• No guarantees of optimality. 

Martins, J. R. R. A., & Ning, A. (2021). Engineering Design Optimization
(Issue September). 

evaluation selection

mutationcrossover



We need all-at-once optimization to improve 
the conceptual design process!

We want to 
move 

towards the 
system 

optimum…

Instead of 
having a 
push-pull 
design 
process…
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Take advantage of

• Mathematical guarantees,

• Ability to make both discrete and continuous decisions, 

• Speed and scalability,

but also leverage new literature in

• Machine learning (ML): making predictions and prescriptions from data,

• Robust optimization (RO): decision making under uncertainty sets,

to improve the ability of tools to address complexities of new concepts. 
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Thesis theme: Address conceptual design using 
all-at-once mixed-integer linear and convex optimization. 



My thesis addresses two specific opportunities in 
aerospace design using linear and convex optimization. 
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Ch. 2: 
Optimization over constraints and 

objectives with arbitrary 
mathematical primitives, using 

machine learning (ML) and mixed-
integer optimization (MIO). 

Global Optimization via
Optimal Decision Trees

(30 mins)

Ch. 3: 
Design optimization while protecting 

against uncertainty in a tractable, 
deterministic manner, using robust 

optimization (RO). 

Engineering Design Decisions Under 
Uncertainty via RSPs

(10 mins) 



Global Optimization via 
Optimal Decision Trees
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Constraints in aerospace engineering come in 
many forms. 

Explicit Inexplicit
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Existing global optimizers are not sufficiently 
general to address design problems. 
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CONOPT: A generalized reduced gradient method, assumes
• Continuous variables,
• Smooth, well-scaled constraints and first derivatives. 
IPOPT: An interior point method, assumes
• Continuous variables,
• Twice-continuously-differentiable constraints and objective.
BARON: A branch-and-reduce MIO method that assumes
• Allowable primitives “exp(x), ln(x), xα for real α, and βx

for real β”. 



Proposed approach: Optimize over 
objectives and constraints with 
arbitrary mathematical 
primitives by 
learning MIO-compatible 
approximations of f, gi and hj.

Only requirements are 
bounded domain for decision 
variables in difficult constraints. 
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MIO-compatible approximation can be 
described by a combination of 
separating hyperplanes and integer variables.
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Parameter learning [PL] 
(i.e. fitting) has received attention, 
but has limits.
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1. Magnani, A., Lall, S., & Boyd, S. (2005). Tractable fitting with convex polynomials via sum-of-squares. 
Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, 
CDC-ECC ’05, 2005, 1672–1677.

2. Hoburg, W., Kirschen, P., & Abbeel, P. (2016). Data fitting with geometric-programming-compatible softmax
functions. Optimization and Engineering, 17(4), 897–918.

• Similarity: PL methods assume 
some underlying structure of the 
data (e.g. convex polynomial-
ness, piecewise linearity, or 
convexity). 

• Difference: The methods 
consider fitting without 
consideration for data 
generation. 



Constraint learning expands the scope of PL 
to arbitrary constraints, models or data. 
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Decision trees are MIO-compatible
nonlinear classifiers. 
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Optimal 
Classification Tree 
(OCT)

Optimal 
Classification Tree 
with Hyperplanes 
(OCT-H)



OCTs/ORTs are superior to other ML methods.

• Tunable: Depth and sparsity can be adjusted. Training time/optimality can 
be traded off as well for dynamic applications.

• Accurate: Achieve low misclassification/MSE error without overfitting.

• Interpretable: Each split of a tree defines an easy-to-apply decision rule.

• MIO compatible: Predictions can be represented using linear constraints 
and binary variables!
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Bertsimas, D., & Dunn, J. (2017). Optimal classification trees. Machine Learning, 106(7), 1039–1082.



Contributions

1. Ensemble of methods for sampling constraints for learning. 

2. Learning of nonlinear constraints using decision trees (DTs). 

3. A representation of DTs that is compatible with mixed-integer 
optimization. 

4. A projected gradient descent method to check and repair near-
optimal, near-feasible solutions from the approximations.

5. Application of DT-driven global optimization to a set of benchmark 
and real world problems. 

19



Method and Demonstrative 
Example
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OCT-HaGOn [OCT-H for Global 
Optimization] takes the following steps. 

1. Generates standard form problem. 

2. Samples and evaluates nonlinear constraints. 

3. Trains DTs over constraint data. 

4. Generates MIO representations of DTs. 

5. Solves MIO approximation. 

6. Checks and repairs solution. 
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Consider the following (modified) mixed-integer 
nonlinear problem from Duran and Grossmann, 1986.
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Duran, M. A., & Grossmann, I. E. (1986). An Outer-Approximation Algorithm for a Class of 
Mixed-Integer Nonlinear Programs. Mathematical Programming, 36, 307–339.
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Objective function

Difficult constraints

Easy constraints

Variables

1. It generates a standard form problem, separating 
the “easy” and “difficult” constraints. 



1. Most global optimization problems are in this 
standard form by construction. 
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Objective function

Difficult constraints

Easy constraints

Variables



2. It generates samples efficiently for each difficult 
constraint over dom(x), in two steps.

1. Optimal Latin 
Hypercubes (OLH)

Generating space-filling 
samples for accuracy over 
the whole domain of x, using 
an off-the-shelf package.

2. k-Nearest Neighbors (kNN) 
Sampling

Sampling near the constraint 
boundary for local accuracy, 
using a new algorithm. 
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Bates, S. J., Sienz, J., & Toropov, V. V. (2004). Formulation of the Optimal Latin Hypercube 
Design of Experiments Using a Permutation Genetic Algorithm. Collection of Technical 
Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials 
Conference, 7(April 2004), 5217–5223. 



2. Optimal Latin Hypercubes is space-filling, 
to ensure good global approximation accuracy.
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Randomization Latin 
Hypercubes

Optimal Latin 
Hypercubes
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2. kNN is an ML algorithm that can be used for 
sampling x-domains of interest. 

Unknown constraint boundary
Feasible region

Infeasible region

Given evaluated OLH 
samples, compute all kNN
cells centered at data 
points. Identify the mixed-
feasibility cells.
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Within the cell, perform 
secant method between 
points of opposing 
feasibility. 

Evaluate new points, which 
will be near-infeasible. 

Unknown constraint boundary
Feasible region

Infeasible region

2. Root finding ( ) is approximated via the 
secant method. 



2. The points for are given below.
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Distribution of points 
are not obviously 
beneficial, but 
improve both the 
global and local 
accuracy of 
approximation. 



3. OCT-HaGOn trains decision trees over 
feasibility data, using                               . 
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~99% accuracy in 600 samples over dom(x). 



4. g1 has the following big-M free, 
locally ideal1 MIO representation.
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Leaf 4

Leaf 7

1. Vielma, J. P. (2015). Mixed Integer Linear Programming Formulation Techniques. SIAM Review, 57(1), 3–57.

Book-keeping note: Auxiliary variables 
have constraint and leaf indices, in this case 
constraint 1 and leaves 4 and 7. 



4. g2 is similarly approximated.  

32



5. OCT-HaGOn solves 
the mixed-integer linear  
approximation to find a 
near-feasible, near-
optimal solution, x*.
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6. It checks and repairs the solution using a 
projected gradient descent method. 

• The MI approx. is replaced 
by an auto-differentiated 
local gradient. 

• It takes steps (i.e. solves 
quadratic optimization 
problems) that restore 
feasibility as well as 
descend the objective. 

• Example projection and 
descent steps on the right 
(shown on of g1).
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Benchmark problems
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Success in small benchmarks gives confidence in the 
method. 
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OCT-HaGOn is competitive solving much 
larger problems as well. 
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Real world problems
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Golinski’s [1970] speed reducer is an NLO 
problem from aerospace literature. 

(Minimize 
weight.)

(subject to specifications; 
and stress, deflection, 
geometry and 
manufacturability 
constraints.) 39



Each NL constraint is approximated. (1) 
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Each NL constraint is approximated. (2) 



OCT-HaGOn converges to a solution better 
than the best known (BK) optimum.

• Notes: 
• Error is on constraints and objective. 
• IPOPT requires relaxing integrality constraint. 
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Also applied methods to a satellite on-orbit 
servicing (OOS) optimization problem.
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One servicer satellite needs to refuel 7 client satellites in 
orbit through a series of orbital transfers.



OOS problem description and parameters

44

Objective: minimize total fuel,
Subject to:
• Transfer orbit entry burn,
• Transfer orbit exit burn, 
• Mass conservation,
• Phasing orbit period,
• Transfer time,
• Transfer orbit revolutions,
• Total maneuver time constraints.

Problem size: 
• 123 continuous variables,
• 49 binary variables,
• 60 nonlinear equalities (!).



OOS problem is solved via two ways. 
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OCT-HaGOn solution
has same optimal 
schedule as a 
discretized MI-bilinear 
solution, with slight 
suboptimality.

Both cases took around 
15s to solve 
(not to mention the 
reformulation time for 
MI solution).



Conclusions

• The OCT-HaGOn constraint sampling and learning approach is powerful to 
solve a wide range of design optimization problems. 

• OCT-HaGOn may currently be the only MIO approach to handle explicit 
and inexplicit constraints in one framework. 

• Constraint learning could leverage other MIO-compatible ML methods, 
such as neural networks and tree ensembles1. 

• In thesis, I discuss future work for DT-based optimization in length, 
including:

• Different sampling and training methods, 
• Complexity theory, 
• Using MI-convex formulations, 
• Improving the speed and reliability of the method. 

461. Maragno, D., Wiberg, H., Bertsimas, D., Birbil, S. I., den Hertog, D., & Fajemisin, A. (2021). Mixed-Integer Optimization with Constraint Learning. ArXiv.



When can you use OCT-HaGOn? 

• Work in progress, with George 
and Dimitris. 

• After paper submission, it will be 
public (January 2022). 

• Now at 2700 active lines of Julia 
code and over 100 pull requests. 

• Requires an academic license for 
IAI. Compatible with any 
JuMP.jl-compatible MIO solver; 
uses CPLEX by default. 
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~83% of code tested



Engineering Design under 
Uncertainty via Robust 
Optimization
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Motivation: Legacy design methods do not adequately 
consider the risk-performance tradeoff. 

1/24/2022 49

Max zero-fuel 
weight

Max takeoff 
weight

Max fuel 
capacity

There is no such thing as a 
free lunch. Conservative 
margins leave performance on 
the table. 

How about:
- Technological 

capabilities?
- Manufacturing quality?
- Regulatory environment? 



Robust optimization is a tractable, deterministic method 
for optimization under uncertainty (OUU).
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RO makes sure all constraints are feasible for all parameter outcomes 
from an uncertainty set, while minimizing the worst-case objective.



Primary Contributions

1. A tractable robust signomial programming (RSP) formulation for 
design under uncertainty, that is sufficiently general to address 
aerospace design problems. 

2. Application of RO to an aircraft design problem, showing its 
practicality, tractability and ability to consider uncertainty with 
mathematical rigor.
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Problem of interest: aircraft design that captures 
important multidisciplinary tradeoffs.
• Unmanned, gas-powered aircraft

• Without uncertainty: 176 variables and 154 constraints

• Monolithic: optimizes aircraft and flight trajectory concurrently 
through disciplined SP form
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Fuselage
• Fuel and payload

• Profile drag

Wing
- Structure

- Fuel volume

- Profile drag

- Stall constraint

Engine
- Data-based sizing
- Lapse rate
- BSFC fits
- T/O and TOC 

constraints



We determine uncertain parameters, and 
expected variances. 
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The uncertainty is defined by box and ellipsoidal sets. 
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Primary result: RSP mitigates probability of constraint 
violation under uncertain outcomes, 
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and is less conservative than designs with margins.

Margins, PoF
Box, PoF
Ellipsoidal, PoF
Margins, cost
Box, cost
Ellipsoidal, cost



robust is open source!
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Written in Python3, meshes with                  ! 
• Repository:
https://github.com/convexengineering/robust
• Documentation: 
https://robust.readthedocs.io/



Contributions

A Global Optimization method 
for aerospace design that is,
• General to explicit and inexplicit 

constraints with bounded decision 
variables,

• Compatible with mixed-integer 
linear optimization,

• Tractable and effective at 
addressing real world problems. 

A Robust Optimization method 
for aerospace design under 
uncertainty that is,
• Sufficiently general to address 

aerospace design problems,

• Tractable and deterministic,

• Provides probabilistic guarantees of 
constraint satisfaction. 
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Back-up slides
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Requirements growth asks more and more from 
aircraft design, with diminishing marginal returns.
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Wright Flyer (1903) 
requirements: 
“Flight”!

DC3 (1936) 
requirements: 
Wright Flyer reqs. +
Passengers and cargo +
1000mi range +
Basic reliability

B777 (2011) requirements: 
DC3 reqs. + 
Transonic flight +
Safety + 
Emissions regulations +
ETOPS operations + 
Fly-by-wire + …



MI optimization has experienced a dramatic 
improvement in solver efficiency. 

1998 2003

Bixby, R., & Rothberg, E. (2007). Progress in computational mixed integer programming - A look back from the 
other side of the tipping point. Annals of Operations Research, 149(1), 37–41. 

Larger problems 
have sped up more!

(This is without considering hardware improvements.)
MIO approximation approach is promising. 

66



MIO approximations of difficult constraints
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The locally ideal MIO approximation is as follows: 

Where: 
• x are the original variables
• yl are the auxiliary variables in each leaf.
• zi,l are the binary variables in the feasible leaves.  
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The MIO approximation of the original 
problem is the following…

…and its solution 
is a near-feasible, 
near-optimal x*. 
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Solution check and repair using projected gradient 
descent.

• The MI approx. is replaced by an auto-differentiated local gradient. 

• It takes steps (i.e. solve a quadratic optimization problem) that restore 
feasibility as well as descend the objective. 

• Example projection step, with d step: 

Δ objective   +  step penalty   +   infeasibility penalty
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Gradient descent formulation
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Projected gradient descent formulation

72



Decision tree parameters in IAI
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OOS variables

74



OOS linear constraints
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OOS nonlinear constraints (1)
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OOS nonlinear constraints (2)
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OOS solution
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Considerations for constraint generation:

• Whether we have data or functions? 

• Does the function have an accessible gradient / is it auto-
differentiable? 

• Is the function/data convex and can we detect its convexity? 

• Are the functions expensive? 
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Future with for OCT-HaGOn

• Improving OCT-H training and accuracy
• Dynamic sampling/re-training/re-optimization

• MI-convex formulation
• Can already embed convex constraints directly, 
• But is there something to gain by changing the type of in-leaf approximation?

• Random restarts of the tree approximators

• Integration of other MIO-compatible ML models
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Aerospace Design via Robust 
Optimization

81



Mathematical moves to obtain RSPs

• LPs have tractable robust counterparts.

• Two-term posynomials are LP-approximable.

• All posynomials are LP-approximable.

• GPs have robust formulations.

• RSPs can be represented as sequential RGPs.

1/24/2022 82



LPs have tractable robust counterparts. 

1/24/2022 83

Robust 
counterpart

I tip my hat to the editor!

A tractable SOCP!



Two-term posynomials are LP-approximable. 

1/24/2022 84
Hsiung, K. L., Kim, S. J., and Boyd, S., “Tractable approximate robust geometric 
programming,” Optimization and Engineering, vol. 9, 2008, pp. 95–118.

Approximation error vs. degree of PWL approximation r.



All posynomials must then be LP-
approximable.

1/24/2022 85Saab, A., Burnell, E., and Hoburg, W. W., “Robust Designs Via Geometric 
Programming.” 2018. ArXiv:1808.07192

The recipe: Simple example:



Uncoupled posynomials are robustified
separately.
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Three approximations exist for RGP.
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Increasingly
conservative

- Simple conservative
- Maximizes each monomial term 

separately

- Linearized perturbations
- Separates large posynomial into 

decoupled posynomials
- Robustifies smaller posy’s using 

RLO techniques

- Best pairs
- Separates large posynomial into 

decoupled posynomials
- Finds least conservative 

combination of monomial pairs

Uncertain coefficients only

Uncertain coefficients 
and exponents

Saab, A., Burnell, E., and Hoburg, W. W., “Robust 
Designs Via Geometric Programming.” 2018. 
ArXiv:1808.07192



We augment the SP solution heuristic.
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RSP formulations exist for all SP-compatible 
problems.
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Uncertainty sets considered

Box (L-∞ norm)

More conservative than margins.
Elliptical (L-2 norm)

A less conservative candidate!

1/24/2022 90

Other norms also valid.

Margins optimize on a 
corner of the hypercube!



Goal programming: risk is a global design objective. 

1/24/2022 91

Standard RO form Goal programming form

Suggests a good formulation for 
multi-objective design space 
exploration:



Applications
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Effective integration of simulations and data into 
aerospace design
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Virgin Hyperloop

Aurora D8 Electra.aero



Efficient discrete decisions in design

Scheduling Component selection
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Norheim, J. (2020). Satellite Component Selection with Mixed Integer Nonlinear Programming. 
IEEE Aerospace Conference Proceedings.



Nonlinear dynamics and control (1)
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Bezos, J. P., Lai, G., & Findlay, S. R. (2014). Sea Landing of Space Launch Vehicles and Associated Systems and Methods
(Patent No. US 8,678,321 B2).



Nonlinear dynamics and control (2)
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Example Lotka-
Volterra population 
model.



Contributions

A Global Optimization method to optimize over objectives and 
constraints that is

• General to addressing explicit, inexplicit and data-driven 
constraints with bounded decision variables,

• Compatible with mixed-integer convex optimization,

• Tractable and effective at addressing real world problems. 
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