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Aerospace engineering 1s only 120 years old, but been
instrumental for expanding human frontiers.

Wright Flyer, 1903 - First heavier-
than-air flight on Earth featuring
efficient, high-speed propellers and
lightweight propulsion.

Ingenuity, 2021- First heavier-than-
air flight on Mars featuring
efficient, high-speed propellers and
lightweight propulsion.




Aerospace concepts are limited by the 2" Law!
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Commercial aerospace
products have had a rate of

improvement of 3.3% since
1950s.

For the configuration and
technologies, it becomes
harder to squeeze
performance from each unit
of energy.



Design tools are critical for novel, increasingly
complex concepts where experience 1s lacking.
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Improved computation has yet to meet

challenges 1n design.
13?45 > 2025

Transistor Count 1,000

10,000,000 - . .
The Number of Transistors Per Chip
1,000,000 - Double Every 18 Months

100,000 Pentium® Il Processor _

N
o

N
o

=/

Years from start to Initial Operational Capability

Years to IOC

Pentium Pro Processor
*1 10,000 -
o Pentium Processor
10 - 1,000 i486™ Processor
i386™ Processor
100 - 80286
5 2
ol 10 18008
o |projected 3 " 3 1%11%1111:1111}.1111:1111{11111111.1

W0 WG S $00 ¢ 0 e 4 e . '
45“ 1955 .1965 1975 1985 1995 2005’ 2015’ 2025

Year of Initial Operational Capability ’71 '76 ’81 ‘86 l91 ‘96

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) Source:Intel Corporation

19.

Year of initial operational capability (I0C)



Aerospace literature has primarily focused on:

Gradient-based methods

(eg. Quasi-Newton descent)

. 1 _ -~
fx+p)=fi+ ViTp+ EPTHI«P :

* Limited to local optimization, often of
a few disciplines or subsystems.
* Requires a good 1nitial guess.

Heuristic methods
(eg. genetic algorithm)

evaluation selection
T L=l e
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crossover mutation

e Limited to low-dimensional
optimization.

* No guarantees of optimality.

Martins, J. R. R. A., & Ning, A. (2021). Engineering Design Optimization

(Issue September).
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We need all-at-once optimization to improve
the conceptual design process

We want to
move
towards the
system

optimum...
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Thesis theme: Address conceptual design using
all-at-once mixed-integer linear and convex optimization.

Take advantage of

* Mathematical guarantees,

* Ability to make both discrete and continuous decisions,

* Speed and scalability,

but also leverage new literature in

* Machine learning (ML): making predictions and prescriptions from data,
* Robust optimization (RO): decision making under uncertainty sets,

to improve the ability of tools to address complexities of new concepts.



My thesis addresses two specific opportunities in
acrospace design using linear and convex optimization.

Ch. 2: Ch. 3:
Optimization over constraints and Design optimization while protecting
objectives with arbitrary against uncertainty in a tractable,
mathematical primitives, using deterministic manner, using robust
machine learning (ML) and mixed- optimization (RO).

integer optimization (MIO).

Global Optimization via Engineering Design Decisions Under

Optimal Decision Trees Uncertainty via RSPs
(30 mins) (10 mins)



Global Optimization via
Optimal Decision Trees



Constraints 1n aerospace engineering come in
many forms.
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Existing global optimizers are not sufficiently
general to address design problems.

CONOPT: A generalized reduced gradient method, assumes

e (Continuous variables,

 Smooth, well-scaled constraints and first derivatives.

IPOPT: An interior point method, assumes

 (Continuous variables,

* Twice-continuously-differentiable constraints and objective.

BARON: A branch-and-reduce MIO method that assumes

* Allowable primitives “exp(x), In(x), x* for real a, and
for real B”.



Ax > b, Cx =d,
T € |z, Tk, k € [n].

Proposed approach: Optimize over
objectives and constraints with
arbitrary mathematical
primitives by

learning MIO-compatible
approximations of f, g; and 4.

Only requirements are
bounded domain for decision
variables in difficult constraints.



MIO-compatible approximation can be
described by a combination of

separating hyperplanes and integer variables.
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Parameter learning [PL]

(1.e. fitting) has received attention.

but has limits.

* Similarity: PL methods assume
some underlying structure of the
data (e.g. convex polynomial-
ness, piecewise linearity, or
convexity).

* Difference: The methods
consider fitting without
consideration for data
generation.

Fig. 2: Pseudo minimum volume example.
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1. Magnani, A., Lall, S., & Boyd, S. (2005). Tractable fitting with convex polynomials via sum-of-squares.
Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference,
CDC-ECC 05,2005, 1672-1677.

2. Hoburg, W., Kirschen, P., & Abbeel, P. (2016). Data fitting with geometric-programming-compatible softmax
functions. Optimization and Engineering, 17(4), 897-918. 15



Constraint learning expands the scope of PL
to arbitrary constraints, models or data.

In ML jargon: Can we sample data for and train MIO-compatible binary
classifiers to approximate difficult constraints?

If so, confirming whether x satisfies g;(x) > 0 would be equivalent to query-
ing the trained classifier M.

I(gi(x) > 0) ¢ M (x)

More importantly, if classifier is MIO-compatible, then we could use the
classifier to optimize approximately over functions and/or data.

gi(x) >0 x e {X: M(X) =1}



Decision trees are MIO-compatible
nonlinear classifiers.
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OCTs/ORTs are superior to other ML methods.

* Tunable: Depth and sparsity can be adjusted. Training time/optimality can
be traded off as well for dynamic applications.

* Accurate: Achieve low misclassification/MSE error without overfitting.
 Interpretable: Each split of a tree defines an easy-to-apply decision rule.

« MIO compatible: Predictions can be represented using linear constraints
and binary variables!

Bertsimas, D., & Dunn, J. (2017). Optimal classification trees. Machine Learning, 106(7), 1039-1082.



Contributions

. Ensemble of methods for sampling constraints for learning.
. Learning of nonlinear constraints using decision trees (DTs).

. A representation of DTs that is compatible with mixed-integer
optimization.
. A projected gradient descent method to check and repair near-

optimal, near-feasible solutions from the approximations.

. Application of DT-driven global optimization to a set of benchmark
and real world problems.



Method and Demonstrative
Example



OCT-HaGOn [OCT-H for Global
Optimization] takes the following steps.

Generates standard form problem.

Samples and evaluates nonlinear constraints.
Trains DTs over constraint data.

Generates MIO representations of DTs.
Solves MIO approximation.

AN AN ol S

Checks and repairs solution.



Consider the following (modified) mixed-integer
nonlinear problem from Duran and Grossmann, 1986.

min f(x) = 10x; — 17x3 — bxy + 625 + 8x¢

s.t. g1(x) = 0.8log(x2 + 1) + 0.96log(x; — x2 + 1) — 0.8x3 > 0,
g2(x) = log(x2 + 1) + 1.2log(x1 —x2 +1) — x3 — 2x6 + 2 > 0,
r1—x2 >0, 24 —22 20,

205 —x1+x2 >0, 1 —2x4—2x5 >0,

0<21 <2, 0<23<2, 0<23<1,

T4, x5,z € {0,1}°.

Duran, M. A., & Grossmann, I. E. (1986). An Outer-Approximation Algorithm for a Class of
Mixed-Integer Nonlinear Programs. Mathematical Programming, 36, 307-339.



1. It generates a standard form problem, separating
the “easy” and “difficult” constraints.

Variables Tl € [@k,xk], k € [n]




1. Most global optimization problems are 1n this
standard form by construction.

s.t. g1 (X) — 0. 810g(X2 + 1) + 0.96log(x1 — X2 + 1) — 0. 8x3 > O
Difficult constraints g2(x) =log(xa + 1) + 1.2log(x; —xp + 1) — x5 — 2x +2 > 0,

Variables 0<$1<2 S ms s O<:z:'3<1
T4, 5,26 € {0,1}°.




2. It generates samples efficiently for each difficult
constraint over dom(x), 1n two steps.

1. Optimal Latin 2. k-Nearest Neighbors (KNN)
Hypercubes (OLH) Sampling

Generating space-filling Sampling near the constraint

samples for accuracy over boundary for local accuracy,

the whole domain of x, using using a new algorithm.

an off-the-shelf package.

Bates, S. J., Sienz, J., & Toropov, V. V. (2004). Formulation of the Optimal Latin Hypercube
Design of Experiments Using a Permutation Genetic Algorithm. Collection of Technical
Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, 7(April 2004), 5217-5223.



2. Optimal Latin Hypercubes is space-filling,
to ensure good global approximation accuracy.

o o
®e
o o
o o
o ® ° °
Randomization Latin Optimal Latin

Hypercubes Hypercubes



2. kNN 1s an ML algorithm that can be used for
sampling x-domains of interest.

Unknown constraint boundary

Feasible region P }
. ’ /
. S i ,,,,,, ¢ ,/  Given evaluated OLH
. ® e ) e samples, compute all KNN
o -7 ¢TI TS cells centered at data
,’ o ¢ points. Identify the mixed-
I o o © feasibility cells.
)/ ° O

/ Infeasible region



2. Root finding (g; (%) = 0) is approximated via the

secant method.

Feasible region o ¢
o O
- O
° ® {Xj ’ yj}
o /’:\ o
' - —“> ; — '_ ;\\4 N - s
- I S s i
o 7 é ® {x;, i
;e
o, ® ® O
/
/ O
O
/
/ : :
/ Infeasible region

Unknown constraint boundary

I

/

Within the cell, perform
secant method between
points of opposing
feasibility.

Evaluate new points, which
will be near-infeasible.



2. The points for g, (x) = 0 are given below.

Samples from constraint g l{x) >0
a

| > J o m&r Distributior.l of points
1 R _:ﬂ-':\g,:: e are not obviously
s '{- o, e S beneficial, but
Nt "r:':"" = I e improve both the
N S e el L global and local
Y ..:"_f: iy, vl-;" i accuracy of
"'5}'.-.. : -'E;-.-:_;_:_:. z*,". = = s approximation.
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3. OCT-HaGOn trains decmon trees over
feasibility data, using

[' Predict false J

p =28.28% ,
x[1] ® ¥ @ correct
1542 1542 .’ :' 5 =
< 2
: : 1} e W oo ¥
e ® . . '.E -:' e oe %8 c% = ne &
2 ) ¢ = U ] ® o @ b
Predict false L T B & o° ® ®
p= 34.70% o3 t.. .{s.“‘ s es o _®, % °
-0.6636 * x[3] = 0.7467 * x{3] %a® gt &L ‘N

<0.03956 =0.03956

*  Predict true
p=79.89%

-0.6657 * x[1] + 0.4771 * x[2] + 0.3709 * x[3]
<0.1039 =0.1039

~99% accuracy in 600 samples over dom(x).
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4. g, has the following big-M free,
locally ideal' MIO representation.

[‘ l::idjzcéfzaslst’z J 1,0,0] - y1,7 > 1.5422 7,
) 1,0,0] - y1,4 < 1.5422 4,
PO »eg [—0.6636,0,0.7467] - y1.4 < 0.0395621 4,
" Preact e [—0.6657,0.4771,0.3709] - y1.4 < 0.103921 4,

- X+ * + = |X1,Z2,. 3|, 214+ 214=1

0.6636 * x[1] + 0.7467 * x[3] Leaf7 Yi4 TY1,7 [ 1, L2, 3]5 1,4 1,4 )

<0.03956 = 0.03956 [0,0,0]21.4 <y1.4 <[2,2,1]21 4,

[07090]Z1,7 < Y S [2727 1]21,73
Z1,4,21,7 € {O, 1}.

*  Predict true
p=79.89%

-0.6657 * x[1] + 0.4771 * x[2] + 0.3709 * x[3]
<0.1039 =0.1039

Book-keeping note: Auxiliary variables

- — have constraint and leaf indices, 1n this case

constraint 1 and leaves 4 and 7.
Leaf4

1. Vielma, J. P. (2015). Mixed Integer Linear Programming Formulation Techniques. SIAM Review, 57(1), 3-57. 3



4. g, 1s similarly approximated.

' Predict true
p=7822%

-0.7025 * ¥[1] + 0.6884 * x[2] 20,1103 * x[3] + 0194 * K[5] [—0.7025,0.6884,0.1103,0.194] - y2.3 < 0.639722 3,
y S (—0.0563,0,0,0.6068] - y2.3 < 0.522220 3,
" e [—0.7025, 0.6884, 0.1103,0.194] - y5.5 < 0.63972.5,

] :

] .

0,053 71T+ 05088 * 5] eSS (—0.0563,0,0,0.6068] - yo.5 > 0.522225.5,
<(1.5222 =0585222
[07 07 17 0 Y25 S 0-54Z2,57

° Predict false
- { p=4167% 1 Y23 + Y25 = [T1,T2, T3, T, 223+ 225 = 1,

3 0,0,0,0]223 <y23 <[2,2,1,1]22 3,

=054 =0.54

[Oa 07 Oa 0]22,5 § Y25 S [27 27 1: 1]22,53
z22.3,%225 € {0, 1}.
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min f(x) =10x; — 1723 — bx4 + 625 + 8z

t Laz) 0901 [ [ R a W ATA L 1) fame] 0
S. T =grt3&y OO S T T T O OO S T r—t—t"} Ty
4
[1,0,0 Yi,7 2 1.04221’7,

] .
[1,0,0] y1.4 < 1.5422 4,
[—0.6636,0,0.7467] - y1,4 < 0.0395627 4,
[~0.6657,0.4771,0.3709] - y1.4 < 01039z 4,
Yia+yi,7=[z,22,23], na+z4a=1,
[0,0,0]214 < ¥y1,4 < [2,2,1]214,

[0,0,0)21,7 < y1,7 < [2,2,1]21,7,

z1,4, 71,7 € {0,1}.

==t 2o gt}

| &)

[—0.7025,0.6884, 0.1103,0.194] - y2,5 < 0.639723 3,
[~0.0563,0,0,0.6068] - ya.5 < 0.522225.3,
[—0.7025, 0.6884,0.1103, 0.194] “y25 < 0.6397225,
[~0.0563,0,0,0.6068] - y2.5 > 0.522223.5,
[07 0) 11 0] “Y25 S 0-5422.57
Y23+ ¥o5 = [#1, %0, T3, 7¢], 203+ 225 =1,
[07 07 010]22.3 S Y23 S [2 2) 17 1]'22,31
[0,0,0,0]205 < y25 <[2,2,1,1]225.
223,225 € {07 1}.
T1— 2220, 274 — 722 >0,
25 —x1+ 12 >0, 1—x4 — 75 >0,
0<21<2,0<22<2, 0<23<1,
T4, 75,76 € {0,1}°.

5. OCT-HaGOn solves
the mixed-integer linear
approximation to find a
near-feasible, near-
optimal solution, x*.



6. It checks and repairs the solution using a
projected gradient descent method.

Projected gradient descent iterations

* The MI approx. 1s replaced
by an auto-differentiated
local gradient.

* [t takes steps (i.e. solves o7
quadratic optimization
problems) that restore
feasibility as well as “os
descend the objective.

0.6

0.4

* Example projection and
descent steps on the right 03
(shown on of g,).
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Benchmark problems



Success 1n small benchmarks gives confidence 1n the

method.
Problem | Continuous | Integer Linear Nonlinear | Nonlinear | Nonlinear
Name Variables | Variables | Constraints | Inequalities | Equalities | Objective
minlp 3 1 4 2 0 Y
pooll 7 0 2 4 0 N
nlpl 2 0 0 1 0 N
nlp2 3 0 0 0 3 N
nlp3 10 0 3 1 3 Y
Problem name Objective Time (s) Solution
BARON | OCT-HaGOn | BARON | OCT-HaGOn BARON OCT-HaGOn
minlp 6.0098 6.0098 0.120 29.9 0,1,0,1.3,0,1] 0,1,0,1.3,0,1]
[4.0, 3.0, 1.0, 4.0, [4.0, 3.0, 1.0, 4.0,
pooll 23.0 23.0 0.082 3.90 0.0 2.12, 0.0] 0.0 6.63, 0.0]
nlpl -6.667 -6.667 0.106 0.461 6, 0.667] [6, 0.667]
nlp2 201.16 201.16 0.092 2.75 [6.29, 3.82, 201.16] | [6.29, 3.82, 201.16]
nlp3 -1161.34 -1161.34 1.265 17.7 [s:] Js:]
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OCT-HaGOn 1s competitive solving much
larger problems as well.

Problem Continuous | Integer Linear Nonlinear | Nonlinear | Nonlinear
name Variables | Variables | Constraints | Inequalities | Equalities | Objective
himmell6 19 0 1 15 6 N
kall circles_c6b 18 0 5% 21 1 N
pointpack08 17 0 41 28 0 N
flay05 23 40 61 ) 0 N
fo9 111 2 326 18 0 N
09_ar4_1 109 2 418 18 0 N
Problem name Objective Time (s) GO
GO OCT-HaGOn BK GO OCT-HaGOn
himmell6 -0.6798 —0.8660* -0.8660 0.055 109.575 CONOPT
kall_circles_c6b | 2.8104 2.1583* 1.9736 0.355 38.503 IPOPT
pointpack08 -0.2574 -0.2500 -0.2679 13.483 91.805 IPOPT
flay0O5h 64.498 64.499 64.498 0.212 9.515 CONOPT
fo9 23.464 23.464 23.464 959.090 29.534 BARON
09_ar4d_1 236.138 236.138 236.138 | 2283.281 1255.598 BARON

37




Real world problems



Golinsk1’s [1970] speed reducer 1s an NLO
problem from aerospace literature.

min  f(x) = 0.7854x;x3(3.3333x3 + 14.9334x3 — 43.0934) — 1.508x; (x2 + x7)
+7.477(x3 + x3) + 0.7854(x4x¢ + x5x7)
X1 € [2.6, 3.6], x2 € [0.7, 0.8], x3 € [17, 28]
x4, X5 € [7.3, 8.3], x¢ € [2.9, 3.9], x7 €[5, 5.5]

gi1(x) = (27 — x1x3x3)/27 < 0

g2(x) = (397.5 — x1x3x3)/397.5 < 0

g3(x) = (1.93 — (xaxgx3) /,xi) /193 <0

g4(®) = (1.93 — (x2x7x3)/x3)/1.93 <0

g5(x) = [(745x4/(x2x3))% + 16.91 x 109193 /0.1x2 — 1100 < 0
g6(x) = [(745x5/(x2x3))* + 157.5 x 10°1°°/0.1x3 — 850 < 0
g7(x) =x2x3 —40 <0

(Minimize
weight.)

g8(®) = (5—x1/x2)/5<0 (subject to specifications;
go(x) = (x1/x3 —12)/12 <0 and stress, deflection,
g10(x) = (1.9 4+ 1.5x¢ — x4)/1.9 <0 geometry and. |

211 (x) =(1.9+ 1.5x7 — x5)/1.9 <0 manufacturability

constraints.) 19



Each NL constraint 1s approximated. (1)

Some are straightforward, eg:

0.5

T4 \? 6 3
) +16.91 x 10 ] 0.122 — 1100 < 0,

o= (1.2,

where a single hyperplane is able to approximate the constraint
in the relevant dom(x) with 100 % accuracy over 602 uniform samples.

' Pradict false
p=73012%

0.002779 * x|4] +.0.8483 * x[6]
<2855 =255

40



Each NL constraint 1s approximated. (2)

Other constraints have more complicated approximations:

f(x) = 0.7854z125(3.333323 + 14.9334x3 — 43.0934)
— 1.5079z1 (z2 + 22) + 7.477(x3 + 23) 4 0.7854(z422 + z522),

where the objective is represented by a regression inside 19 unique polyhedra
with R? of 0.995 over 531 samples.
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OCT-HaGOn converges to a solution better
than the best known (BK) optimum.

T1  To T3 T4 s 6 T Objective | Time (s) | Error
BK | 3.5 0.7 17 7.3 7.7153 3.3503 5.2867 | 2994.472 476 10=°
OCT-HaGOn | 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 | 2994.355 32.6 0
IPOPT | 3.5 0.7 17.0% 7.3 7.7153 3.3502 5.2867 | 2994.355 4.2 10~ 7
* Notes:

 Error is on constraints and objective.

* IPOPT requires relaxing integrality constraint.




Also applied methods to a satellite on-orbit
servicing (OOS) optimization problem.

Phase A)
Having just
completed servicing
of Satellite 1, servicer
performs Hohmann
transfer to lower
Phasing Orbit

BhaseCl
Servicer exits the
phasing orbit via

Hohmann transfer to
rendezvous wi th
Satellite 2

Servicer waits in
phasing orbit to
‘synch’ with Satellite
2's true anomaly

Fig. 5 Concept of operation for orbital phasing to align the true anomaly of the OOS with the client sat,

One servicer satellite needs to refuel 7 client satellites in
orbit through a series of orbital transfers.
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OOS problem description and parameters

Client satellite fuel needs

Refuel needed (kg)

1=}

o

150
100
5 =
1 2 3 4 5 6 7

Satellite index

Parameter Value Units
Satellite dry mass 500 kg
Propulsor specific impulse 230 (Ns) /kg
Number of client satellites 7 -
Client satellite altitude 780 km
Servicer satellite altitudes | [760,800] km
Maximum service time 0.35 years

Objective: minimize total fuel,
Subject to:

* Transfer orbit entry burn,

e Transfer orbit exit burn,

* Mass conservation,

* Phasing orbit period,

e Transfer time,

» Transfer orbit revolutions,

* Total maneuver time constraints.

Problem size:

e 123 continuous variables,

* 49 binary variables,

* 60 nonlinear equalities (!).
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OOS problem 1s solved via two ways.

Metric | Values
OCT-HaGOn solution
Wet mass (kg) 1725.9
Total maneuver time (years) 0.350
Satellite order 4 3 2 [ 1 [ 7 ] 6 [ 5
Refuel mass (kg) 196.0 | 159.2 | 189.5 [ 177.4 | 132.9 | 169.6 | 158.2
Transfer orbit altitude (km) 765.8 | 765.8 | T65.8 | 765.8 | 765.8 | 767.6
Maneuver fuel (kg) 9.60 | 874 | 7.73 | 6.79 | 6.08 | 4.17
Maneuver time (days) 20.7 | 20.7 | 20.7 | 207 | 207 | 24.1
Orbital revolutions 297.0 | 297.0 | 297.0 | 297.0 | 297.0 | 345.3
Discretized MI-bilinear solution
Wet mass (kg) 1724.4
Total maneuver time (years) 0.350
Satellite order 4 3 2 1 7 6 5
Refuel mass (kg) 196.0 | 159.2 | 189.5 [ 177.4 | 132.9 | 169.6 | 158.2
Transfer orbit altitude (km) 768.0 | 768.0 | 766.0 | 765.0 | 765.0 | 762.0
Maneuver fuel (kg) 846 | 7.53 | 7.51 | 6.77 | 5.80 | 5.51
Maneuver time (days) 249 | 249 | 214 | 199 | 199 | 16.6
Orbital revolutions 357.1 | 357.1 | 306.1 | 285.7 | 285.7 | 238.1

Table 2.10: The discretized and OCT-H formulations come up with the same optimal satellite
schedule, although the MI-bilinear approximation is 0.1% better.

OCT-HaGOn solution
has same optimal
schedule as a
discretized MI-bilinear
solution, with slight
suboptimality.

Both cases took around
15s to solve

(not to mention the
reformulation time for
MI solution).
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Conclusions

* The OCT-HaGOn constraint sampling and learning approach is powerful to
solve a wide range of design optimization problems.

* OCT-HaGOn may currently be the only MIO approach to handle explicit
and inexplicit constraints in one framework.

* Constraint learning could leverage other MIO-compatible ML methods,
such as neural networks and tree ensembles’.

* In thesis, I discuss future work for DT-based optimization in length,
including:
* Different sampling and training methods,
* Complexity theory,
* Using MI-convex formulations,
* Improving the speed and reliability of the method.

1. Maragno, D., Wiberg, H., Bertsimas, D., Birbil, S. I., den Hertog, D., & Fajemisin, A. (2021). Mixed-Integer Optimization with Constraint Learning. ArXiv.



When can you use OCT-HaGOn?

F
x ||||||||

* Work in progress, with George
and Dimitris.

. Interpretable Al

P
* After paper submission, it will be —
public (January 2022). _
* Now at 2700 active lines of Julia
code and over 100 pull requests.
» Requires an academic license for - ’ ’
IAI. Compatible with any ~83% of code tested

S (]

JuMP.jl-compatible MIO solver;
uses CPLEX by default.

2222222222222222222222222
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Engineering Design under
Uncertainty via Robust
Optimization



Motivation: Legacy design methods do not adequately
consider the risk-performance tradeoft.

100

80 i

53]
[:.
Femar,

Payload (klb)

20 |
!

Actual usage

= r||.-':'

AZQO-G00 fight
Marnia

payload-range

2000 3000

Range (nm)

4000

5000

. Max zero-fuel

weight

Max takeoff
weight

Max fuel
capacity

There is no such thing as a
free lunch. Conservative
margins leave performance on
the table.

How about:
Technological
capabilities?
- Manufacturing quality?
- Regulatory environment?
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Robust optimization 1s a tractable, deterministic method
for optimization under uncertainty (OUU).

‘l\
Uy
u, Robust
optimization T
Y — objective
Model
ueu,
eg. |lu| T
J

+— design space™

RO makes sure all constraints are feasible for all parameter outcomes
from an uncertainty set, while minimizing the worst-case objective.



Primary Contributions

1. A tractable robust signomial programming (RSP) formulation for
design under uncertainty, that is sufficiently general to address
aerospace design problems.

2. Application of RO to an aircraft design problem, showing its
practicality, tractability and ability to consider uncertainty with
mathematical rigor.



Problem of interest: aircraft design that captures
important multidisciplinary tradeoffs.

* Unmanned, gas-powered aircraft
* Without uncertainty: 176 variables and 154 constraints

* Monolithic: optimizes aircraft and flight trajectory concurrently
through disciplined SP form

Wing Fuselage Engine
Structure * Fuel and payload - Data-based sizing
Fuel volume * Profile drag - Lapse rate
Profile drag - BSFC fits

- T/O and TOC

Stall constraint constraints



We determine uncertain parameters, and
expected variances.

Table 3.1:

Parameters and uncertainties (increasing order)

Parameters Description Value % Uncert. (30)
e span efficiency 0.92 3
L air viscosity (SL) 1.78 x 107> kg/(ms) 4
0 air density (SL) 1.23 kg/m3 5
Cr, sanx stall lift coeflicient 1.6 D
k fuselage form lactor 1.17 10)
C' ref relerence Tuselage skin friction lactor (0.455 10
Pp pavload density 1.5 kg/m'3 10
N ultimate load factor 3.3 15
| takeoll speed 35m/s 2()
Wh payload weight 3000 N 2()
Woses stie wing structural weight coefficient 2 x 1075 1/m 20)
W oot sari wing surface weight coeflicient 60 N/m? 20)




The uncertainty 1s defined by box and ellipsoidal sets.

U5 U5
’ =1, 30:=30; =1 !

[' =108, 303 =304 =1

Ui
P =:1. 3o =095 5(}",':[]?.”1
(a) Example Loo or box sets. (b) Example L2 or ellipsoidal sets.

Figure 3-5: ' defines the overall size of norm uncertainty sets, while 30 defines the relative
size of the set in each uncertain parameter.
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Primary result: RSP mitigates probability of constraint
violation under uncertain outcomes,

1.0
E 300 |
- 0.8 o
! | .
L -
[@)] —
O 280 ,f
= -0.6
3 d
—= 0.4 o
"5‘ Margins, PoF ©
L0
= 240 - ====Box, PoF o)
4 = Ellipsoidal, PoF D‘:
8 Margins, cost - 0.2
) 220 - Box, cost
Ellipsoidal, cost
—— e
1 1 1 1 1 1 0.0
0.0 0.2 0.4 0.6 0.8 1.0

Uncertainty Set Scaling Factor I

and 1s less conservative than designs with margins.



robust 1s open source!

Welcome to robust’s documentation! «

robust is a framework for engineering system optimization under uncertainty using geometric and
signomial programming.

Robust optimization 101

instaling robust Written in Python3, meshes with @ ﬁ< !
Getting started . .

More advanced commands * RepOSItory'

Why robust optimization? https://github.com/convexengineering/robust
Mathematical mowves for robust

GPs/SPs  Documentation:
gppzrc:ximatinns for tractable robust https ://I'ObllSt.I'eadthedOCS ) iO/

Approaches to solving robust SPs

Goal programming

References
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Contributions

A Global Optimization method
for aerospace design that 1s,
* General to explicit and inexplicit

constraints with bounded decision
variables,

* Compatible with mixed-integer
linear optimization,

* Tractable and effective at
addressing real world problems.

A Robust Optimization method
for aerospace design under
uncertainty that 1s,

* Sufficiently general to address
aerospace design problems,

* Tractable and deterministic,

* Provides probabilistic guarantees of
constraint satisfaction.
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Back-up slides



Requirements growth asks more and more from
aircraft design, with diminishing marginal returns.

Wright Flyer (1903) DC3 (1936) B777 (2011) requirements:

requirements: requirements: DC3 regs. +
“Flight™! Wright Flyer regs. + Transonic flight +

Safety +

Emissions regulations +
ETOPS operations +
Fly-by-wire + ... 65

Passengers and cargo +
1000mi range +
Basic reliability



MI optimization has experienced a dramatic
improvement 1n solver efficiency.

1998 —— 2003
Table 1 Mean performance improvement from CPLEX 5.0 to CPLEX 9.0

Model subset Number of models  Mean speedup

All models 719 16X

CPLEX 5.0 more than 1 second 515 49X Larger problems
CPLEX 5.0 more than 10 seconds 429 94X have sped up more!
CPLEX 5.0 more than 100 seconds 345 162X

CPLEX 5.0 more than 1000 seconds 268 344X

(This 1s without considering hardware improvements.)
MIQO approximation approach is promising.

Bixby, R., & Rothberg, E. (2007). Progress in computational mixed integer programming - A look back from the
other side of the tipping point. Annals of Operations Research, 149(1), 37-41. 66



MIO approximations of difficult constraints

Inequality constraints can be represented as a union of polyhedra bounded
by the splitting hyperplanes.

{x:9i(x) >0} =~ x¢€ U P

Po={xeR,:ap-x<py, VheH,;_;ap-x>p, YVhe H }

Equality constraints can be (a little less obviously) represented by the union
of intersections of pairs of polyhedra.

{x:hj(x)=0} =~ x€ U 150 MLy}

u€lLj0, vELj1
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The locally 1deal MIO approximation 1s as follows:

( { oy < Brziy, VRE Hyy _
Brzii<oapy, VREH;; ,yVI€E Ly,
yi € [x%i1,X%i], | € Ly 1,

X € UPi,l<:f>< ZYsza

leL; 1
E <l — 17

X Zil € {0, 1}, [ € Li,l-

Where:

* x are the original variables

* y, are the auxiliary variables in each leaf.

* z;; are the binary variables in the feasible leaves.



The MIO approximation of the original
problem 1s the following...

min f(x) mmin /7
S.1. gz(X) > 0, 1 E I, s.t. f*ax S U Pi,la
: [
hi(x) =0, jeJ o N
Ax > b, Cx=d, X € U P, Viel,

leLs 1
X € 9 (P, NP, }, Vje

lo€ELj o, 1€L; 1
Ax > b, Cx =d, ...and its solution
Ty € |34, Tk], k € [n] is a near-feasible,
21 €4{0,1}, Vl € L; 1, i € I, near-optimal x¥*.
z;1 € {0,1}, Vle L;, j € J.



Solution check and repair using projected gradient
descent.

* The MI approx. 1s replaced by an auto-differentiated local gradient.

* It takes steps (i.e. solve a quadratic optimization problem) that restore
feasibility as well as descend the objective.

* Example projection step, with d step:

A objective + step penalty + infeasibility penalty
2

+(IIAl12 +1ll2)
2

. *\ |
d
i, TTa s

X — X

s.t. x=x"+d,



(Gradient descent formulation

min  VF(x*)Td +(||M3 + [[4[3)

s T
s.t. x=x"+4d,
d - D e
2 <o)

{ Vgi(x*)Td + gi(x*) = 0,

Vgi(x*)'d+ g:(x*) + A; = 0,
Vhi(x*)Td + h;(x*) 4+ p; >0,

{ Vh;(x*)Td + hj(x*) < pj,

Ax > b, Cx=4d,

T € [z, Tr], Yk € [n]

if g;(x*) >0
if g;(x*) <0

}-. \?fj‘:_—‘jr-

o SE o Fa Y
{;h 0, if gi(x") “}__wf:f,

A >0, if gi(x*) <0
-”ffTRI# jf_—'j-

},H—:ﬁf:ff



Projected gradient descent formulation

2

FA

min  Vf(x*)'d+p +(IANZ + el [2)

X—X

wd A x||,
8.t x=x"+d,

Vgi(x*)Td + gi(x*) >0, if g;(x*) =0 Viel

Voi(x)Td+g(x)+ X =0, ifg(x)<o [* 7 7

Th (¥ T A >

Vh; {x*]_rd + h; (}:*) —I: pj = 0, Yied

Vhi(x*)'d + h;(x*) < uj, :
Ax>b, Cx=d,
Tk € |z, Ti|, Vk € [n]

,)1._.: — ”., if gi[:}{*] > ()

Ai=>0, if gi(x*)<0
Mi r:THI‘I d .Ir €. J

},‘?’ir'cf,
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Decision tree parameters 1n IAI

Parameter OCT-H | ORT-H
Hyperplane sparsity All All
Regression sparsity - All

Max depth 5} 3

Complexity factor 1076 107

Minbucket 0.01 0.02

Random tree restarts 10 10
Hyperplane restarts 5 3

Table 2.1: Parameters for base decision trees in constraint learning.



OOS variables

The satellite OOS problem has the following decision variables and associated dimensions,
where n, is the number of client satellites.

Satellite order variables :
Orbit radii :

Orbital periods :

Orbital period differences :
True anomalies :

Transfer times :

Maneuver times :

Orbital revolutions
Orbital entry mass ratios
Orbital exit mass ratios

Wet mass

Intermediate masses :

Transferred fuel masses :

Zqi €40,1}

Torbit,i © [Tmhu,mim?‘mhit,nmL
T ottt 3 E | Trbat suitvin L ool msics;
AT it s € | AT iy AT e
0; € [-m, 7],

1

tLraulsfur_.i = [U: tLrem:—;f(}r,:mm]:
+
tmzmt:uw:r,l eR s

: Nosbici € [50,500],
: fenteyi € [1,1.0025],
: foxits € [1,1.0023],
> Mwet € [Mary, 2000],

mi j € [Mdry, 2000],

Myel i £ [”"—'fu{:l,minmT”’[‘ut:i.,nmx]:

i€ [l
i € [ng — 1],

i € [ng— 1],
i € [ng— 1]

i € [ng— 1],
i € [ng —1],
i € [ng— 1],
i € ng— 1],
i € [ng — 1],
i € [ng — 1],
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OOS linear constraints

The constraints are given below with brief descriptions.

Each client visited once :

One refuel per rendezvous :

Fuel required for ith client :

True anomaly from client i toi+1 :

Wet mass :
Intermediate fuel transfers :
Dry mass :

Orbital period difference :

Total maneuver time

s

E zi; =1,

i=1

Mg

E Ziq — L

Jj=1
Mg

MMfuel,i — E A”*’-'cf_.jzz'_.j:
1=1

s

0; = Z (—m + 275 [ns)(2it1,

j=1

Mywet — 1,1 + MMifyel, 1
M5 = Mjy1,1 + Mifyelit1,
Mp,—1,5 — Midyy + Mfuel,n,

rm s ol sl
A-Jl-rt'yrbit.i = Iorhiti g Iclicnt:

) ¥

ng—1

: E jtrﬂarl':nl\n::r,'1 < tmax

i=1

Vi € [ng]

Vi € [ng]

Vi € [ng]

—2i5) |, Vi€ [ns—1]

Vi € [ns — 2]

Vi € [ns — 1]
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OOS nonlinear constraints (1)

e Transfer orbit entry burn (ns — 1 constraints): Describes mass ratio (entry mass over
exit mass) of the satellite during transfer orbit entry.

. 1 e 2T client
Jentry,i = max | exp —1 .
gl sp \ Torbit,i Tclient T Torbit,i
1 L 2Torbit,i :
exp f Rkl —1 , 1€ [ns —1].
.qfﬁp Tclient Telient 1 'rm‘l')it.,i

e Transfer orbit exit burn (ns — 1 constraints): Describes the mass ratio (entry mass
over exit mass) of the satellite during transfer orbit exit.

; L m
fexit.i = max | exp — 1y —
) glrsp Tclient Tclient + Torbit,i

1 1 2T clie ;
exp k ) L . , 1€ [ng —1].
gIsp Torbit,i Telient T Torbit,i

e Mass conservation (4(ns — 1) constraints): Couples the fractional change in mass of
the satellite to the absolute change in mass during each burn phase.

27 orbit,i

Mi1 = fentry ithi,2, i€ [ns—1],
Mi2 = fexitiMi3, i€ [ng=1],
M3 = fexit,iMi 4 i € [ng —1],
Mi 4 = fentry,ifmi,5, i € [ns —1].
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OOS nonlinear constraints (2)

e Phasing orbit period (ns — 1 constraints): Describes the period of the phasing orbit.

3
T orbit. i

I

Torbit,i = 2m , 1 € [ns—1].

e Transfer time (ng — 1 constraints): Describes the Hohmann transfer time from the
client to phasing orbit.

A e . v |
; (Tc:hent. -+ Torhli.._t) . :
fi.rans['m',i = 2m , TE I”‘.-s - l]
81

e Number of transfer orbit revolutions (ng — 1 constraints): Describes the number of
revolutions in phasing orbit.

Norbit,iATorbit,i = Telient,i6i, 2 € [ns — 1.
e Maneuver time (ns—1 constraints): Describes the maneuver time (transfer and phasing
time) between clients.

AN & wr ] T + o i by _.'
tmaneuvm',i . jt1.1‘;11151:51‘_.1 o —""'01‘1111..,1?_!‘.‘”'1'111..,11 1€ l”.-s = lJ-
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OOS solution

Satellite refuel (kg)

Satellite refuel (kg)

150

10

=

5

=

=

200
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20 &
E
[ =]
.} 15 § [
S %
= (]
o
2 1o ‘lé 4
& =
=
5 2
i i i I D a i i i
1234567 asa 12 3456
Sateliite order Trarrsfer index Transfer index
(a) The QOCT-H solution.
25
]
20
g 6
2 i
S g
15 =
= w
£ 2
g 5
s
= =
= 2
5
i i i i i i i G 0
1 2345¢67 2 3 4 5 6 2 i 45 ﬁ

Satellite order

Transfer index

(b) The MI-hilinear solution.

Transfer index
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Considerations for constraint generation:

 Whether we have data or functions?

* Does the function have an accessible gradient / is it auto-
differentiable?

* Is the function/data convex and can we detect its convexity?

* Are the functions expensive?



Future with for OCT-HaGOn

* Improving OCT-H training and accuracy
* Dynamic sampling/re-training/re-optimization

* MI-convex formulation
* Can already embed convex constraints directly,
* But is there something to gain by changing the type of in-leaf approximation?

* Random restarts of the tree approximators
* Integration of other MIO-compatible ML models



Aerospace Design via Robust
Optimization



Mathematical moves to obtain RSPs

* LPs have tractable robust counterparts.

* Two-term posynomials are LP-approximable.
* All posynomials are LP-approximable.

* GPs have robust formulations.

* RSPs can be represented as sequential RGPs.



LPs have tractable robust counterparts.

minimize ¢ x

subject to a;x <b;, Va,€elU;, VYi=1,...,m,

U={(al,...,an) :a;i=al+ANu;, i=1,....m, ||ull2 <p},

I tip my hat to the editor!

Robust A T
mininize C I
counterpart

subject to  alx < b; — p||Aixl|2, Vi=1,...,m.

A tractable SOCP!

A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Operations Research Letiers,

202
1/24/2022 25(1):1-13, 1999.



Two-term nosvnomials are LP-approximable.

Corollary 1 For r > 3, the unique best r-term PWL convex lower approxima-
tion h,. R? — R of the two-term log-sum-exp function is

h.(y1,y2) =max{yy,a; ,y1+ajy2+bj,a,_3y1+a>y>+b;,...,

ayyi+a;_,y2+b; 5, y2} (24)
and the unique best r-term PWL convex upper approximation h, : R> — R is

hy(y1,y2) =h, (y1. y2) + €4(r), (25)

wherea®,b?,i =1,...,r —2 arethe coefficients of the segments of ¢ defined in (23).

APPIOXUIdUOIl CITOI VS, UCZICC U1 I' VV L dpproxinauolil I.

Hsiung, K. L., Kim, S. J., and Boyd, S., “Tractable approximate robust geometric
1/24/2022 programming,” Optimization and Engineering, vol. 9, 2008, pp. 95-118.



min

S.t.

All posynomials must then be LP-

approximable.
The recipe:

Jo (117)

max {eail(C]ﬂ:-f-b«;l(C} 4 etl}
CeZ

max {e“ik{C)erbs.:.-(C) + et;,.}
CeZ

I{i atk(C)m—i—bm(C)}
max =K. €
Cez {Zk_fﬁ 1

o Ki am(ﬁ)w-*-bu-(@}
max - :
max { S0

1/24/2022

Vi: K; >3

Vi:K; >4

Vk €2, .. K;—

Vi: Rr%' 2 3

Vi: K; <2

2

Simple example:

min f
s.t.  max {M; + Ms + Mz + My} <1
max { My + Mg} <1

{

min f

s.t. max {.."l-:fl - etl} < 1
max { M, + €2} <t
max { M3 + My} <e*?
max {_-"‘.-f,g, 4 111’;5} =1

Saab, A., Burnell, E., and Hoburg, W. W., “Robust Designs \({ga Geometric
Programming.” 2018. ArXiv:1808.07192 ‘



Uncoupled posynomials are robustified

cenaratelv
P =M1+M2+M3+MA+M5+M6

rva

S1 S3

t1+1t2+13 Bl
max{S1} = max{M; + M3 + My} <t;
< —
L e max{Sa} = max{My + M5} <ty
mazx{S3} = max{ Mg} <t

Figure 2: Partitioning of a large posynomial into smaller posynomials requires the addition of auxiliary
variables. S; are posynomials with independent sets of variables.
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Three approximations exist for RGP.

—_—

- Simple conservative
- Maximizes each monomial term

separately

- Linearized perturbations Uncertain coefficients only
- Separates large posynomial into
decoupled posynomials
- Robustifies smaller posy’s using
RLO techniques

Increasingly
conservative

- Best pairs
- Separates larege posynomial into ) .
P gcP y Uncertain coefficients
decoupled posynomials
. : and exponents
- Finds least conservative
Saab, A., Burnell, E., and Hoburg, W. W., “Robust

combination of monomial patrs —  Designs Via Geometric Programming.” 2018. 87
ArXiv:1808.07192




We augment the SP solution heuristic.

Choose
Solve deter- @0 | Make local GP | methodology Formulate .
S ’ : . y 1 Solve local RGP
ministic SP approximation local RGP
Mot = Az < reltol?

Yes.

Solution @,

Figure 3: A block diagram showing the steps of solving an RSIP.



RSP formulations exist for all SP-compatible
prc

Robust
Signomial
Programming
Determine
Requirements Modeling . SP compatible uncertainties N Distributional
Resources models information
Slgn()lnlal Model un-
Programnﬁng certainties
Vv Vv
Optimal solution l| Reformulate - Generate
Sensitivities i constraints uncertainty sets




Uncertainty sets considered

More co1

Box (L-c0 norm)

corner of the hypercube!

p= o<

Z

Elliptical (L-2 norm)

n margins. A less co;
N
k Margins optimize on a

Other norms also valid.

AN

\
Y

>

'{?:§ p=1

N

p=2

AR
/

1didate!



Goal programming: risk 1s a global design objective.

Standard RO form

min fo(z)

s.t. max fi(z,u) <0, 1=1,...
U

LT

CE—

lu| €T

RO form r ) PoF  Goal form ) T PoF
0.00 25x107* 0.94 2 = =
0.10 0.057 0.87 0.057 0.10 0.87
0.20 0.118 0.76 0.118 0.20 0.76
0.30 0.183 0.60 0.183 0.30 0.60
0.40 0.252 0.38 0.252 0.40 0.38
0.50 0.326 0.20 0.326 0.50 0.21
0.60 0.406 0.10 0.406 0.60 0.10
0.70 0.492 0.07 0.492 0.70 0.07
0.80 0.583 0.04 0.583 0.80 0.04
0.90 0.681 0.01 0.681 0.90 0.01
1.00 0.787 0.00 0.787 1.00 0.00

1/24/2022

Goal programming form

max [

folx) < (1+8)f5, §>0

Suggests a good formulation for
multi-objective design space
exploration:

fU,j(m) < (1+53)f5<,_}1 53 > 07 .] == 11"':

m
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Applications



Effective integration of simulations and data into
acrospace design




Efficient discrete decisions in design

Scheduling Component selection

H I o

Final
ortit
0.305 0.275
palkg/m?) 5.35 0.84
Figure 1. Solar panel catalog
g
]”'té‘.'-; Transfer
orbi : _ -
SoaaY
138.6 144 144 165.6 1,607.04
0.253 0.310 0.355 0710 3.95

Figure 2. Battery catalog

Norheim, J. (2020). Satellite Component Selection with Mixed Integer Nonlinear Programming.

IEEE Aerospace Conference Proceedings.
94



Nonlinear dynamics and control (1)

110

Booster performs vertical

Lifioff from, e.g., landing on sea—going platform

112—~_-Y coastal launch site
140

150

Bezos, J. P., Lai, G., & Findlay, S. R. (2014). Sea Landing of Space Launch Vehicles and Associated Systems and Methods
(Patent No. US 8,678,321 B2).



Nonlinear dynamics and control (2)

Example Lotka-
Volterra population
model.

dx
dt
dy
dt

= z(a —by)

= y(—c+dx)

Predators

=
[

02

i
03

014
Prey

05

0.6
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Contributions

A Global Optimization method to optimize over objectives and
constraints that 1s

* General to addressing explicit, inexplicit and data-driven
constraints with bounded decision variables,

* Compatible with mixed-integer convex optimization,
* Tractable and effective at addressing real world problems.



