Obiectives

Given data from a continuous function f(z), € R? in
the formof Y € R", X € R"*P I aim to approximate the

underlying function with a set of piecewise linear (PWL),
piecewise nonlinear (PWN) and piecewise convex (PWC)
fits with trust regions.

Introduction

[n engineering, design is often informed by input/output data
from expensive simulations and/or testing. More than often,
the output of interest is a nonlinear and nonconvex function of
the input data. Nonlinear function estimation is an unsolved
problem and an active area of research [1].

Trees, and especially optimal regression trees (ORTs) [2],
present an exciting opportunity to partition and fit data in
a form compatible with optimization. Of particular interest
are non-convex inequalities, where a PWL/PWC approxima-
tion without trust regions would result in the epigraph of the
approximation being convex. With ORTs however, we can ob-
tain both the convex approximations and their trust regions
reliably.

To do this, I leverage ideas from:

® holistic regression (HR), to augment my data with
nonlinear functions of the features,

e linear regression (LR) and support vector machines (SVMs),
to optimally select features over which to split data.,

e and ORTs5, to find a locally optimal splitting of the data as
well as its approximation.

This kind of ‘fitting’ has a number of potential applications,
from global optimization via mixed integer convex program-
ming, to surrogate/low-order modeling for real-time simulation
or control.

Data

I focus not on the way that the underlying function is sampled,
but how to make the best use of the existing data. I demonstrate
the effectiveness of the method on a variety of functions and
data, including but not limited to:

e Known uni- and multi-variate functions of data.

e Airfoil simulation data that has known log-convex structure
over the variables.

Piecewise Fits of Functions or Data

using Optimal Regression Trees
Berk Oztiirk

MIT, Department of Aeronautics and Astronautics

Method

The chosen approach has the following steps:

o Augment: Choose a number of nonlinear functions of
the parameters and add these to the data columns.

o Normalize and split: Make sure all data is zero
mean and variance of one, then split into training and test
sets.

e Survey: Use LR and/or SVMs to determine an
appropriate level of sparsity in the split and regression
features.

o Fit: Fit ORTs over the data.

o Resolve: Extract the trust regions and approximations
of the function.

The approach is intrinsically amenable to being sparse in both
the split and regressed features. Furthermore, it gives the de-
signer the ability to tune the properties (eg. linearity, nonlin-
earity, convexity) of fits over the trust regions as desired, giving
flexibility to the problem structure compared to other nonlinear
fitting approaches.

Bivariate Demonstration - 1

[ fit the following quasi-convex function (level sets of data are

convex).

1
f(x) = max(0, x; — 1—OX1X§ — 2, Xo — 2) (1)

(b) ORT with linear regression,
MSE 0.15.

Figure: Quasi-convex data predicted by piecewise linear regression.

(a) Original data

Even with linear fits above, the MSE of prediction is low.

Main takeawav

Optimal Regression Trees built over a small number of nonlinear augmentations of data
can reliably find good PWL/PWC/PWN approximations of underlying functions.

Univariate Demonstration - 1

f(x) = max(—6x — 6, 1X, 1X2 + 1x) (2)
2 5 2
I approximate the above univariate, convex but discontinuous
function, by augmenting the data X = [z, 2.2, €, |z|], and fit-
ting an optimal regression tree (ORT), only allow splits over
the original feature x.

‘ Mean: 1508
n =161
x1
<1.063 = 1063
: Mean: 1.032 ® Reg with mean 3.049
n=123 n=238

%1

<-0.9125 =-0.9125

* Reg with mean 2.775 * Reg with mean 0.06177
n=44 n=79

Figure: Resulting tree for fitting univariate function 2 over augmented data,
X =[z,z.% €% |z|].

Univariate Demonstration - 2

I see good matching between the data and predictions in the
figure below, although the true optimum is not found. Different
colors correspond to points in different leaves/PWC regions.
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Figure: Quadratically augmented data recovers the underlying function with
an RMS error < 0.1%.

Bivariate Demonstration - 2

As I increase the complexity of my splitting and regression
methods, I approximate the data using functions with differ-
ent properties and accuracies, as shown below.

(b) ORT with third-order
augmentations,

MSE 0.13.

(a) ORT with second-order
augmentations,

MSE 0.22.

Figure: Additional complexity has potential to refine and impose different
properties on the fits.

Conclusion and Future Work

ORTs over nonlinear augmentations of data represent a unique
method to make different classes of approximations of functions
or data. Future work will address challenges in the generality
and scalability of this framework, accommodating more general
nonlinear functions and higher dimensional data.
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