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Years from start to Initial Operational Capability
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Cost and time
overruns plague
new aircraft
concepts.
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Moore’s Law has not made the design process
more efficient.

Transistor Count 1,000

Year of Introduction

Sources: DARPA 2012 study, RAND MG276,
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We are motivated to address challenges in
conceptual design.

Aerospace Multi- Tightly
: disciplinary coupled
design
rorsies: I
characteristics: deprived
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Our chosen approach is to leverage convexity,
through geometric and signomial

programming using @

Key takeaway: Signomial programs (SPs)
are a competitive method to solve NLPs in
engineering design, but better
algorithms/heuristics are required.
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What to expect

* Broad mathematical overview of log-convexity.

* Advantages of signomial versus geometric programs.
* Heuristics and algorithms to solve SPs.

* Applications and results.

* Challenges in solving SPs.
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MATHEMATICAL BACKGROUND

A&y convex - M h
mmm engineering II tttttttt
A group T chnolo gy



Geometric programming (GP) is
accurate and practical to solve (certain) NLPs.

minimize po(x)

subjectto p;(x) <1, i=1,..,np,
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mix)=1, i=1,..,n,,

x € R%,, [c,c,] € RE,

n

Advantages:

o Ability to capture real-
world complexity

o Solution speed

o Global optimality

o Sensitivities
Disadvantages:

o Stringent formulation

o Explicit constraints
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Log-log transformation to turn NLP into convex

Geometric
form
monomial

Geometric
form
posynomial
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(¢) Scalar posynomials, ", epu®
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Exponential
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*Hoburg, 2013.
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Many engineering constraints are GP compatible.

Describing fuselage

configuration:
Ah
: : hﬂ,ucar
; W fuse 2 (SPR)wseat + Waisle T Qu’sys
Lholed
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W rloor
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Ay convex BB Massachusetts
. engineering Kirschen, P. G., York, M. A., Ozturk, B., and Hoburg, W. W., “Application of Institute of
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Data can be fit with posynomials.
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Fig. 7 Posynomial fit (solid lines) to XFOIL data (circles). Log-space

r = (.00489.

Burton, M., and Hoburg, W., “Solar
and Gas Powered Long-Endurance
Unmanned Aircraft Sizing via
Geometric Programming,” Journal of
Aircraft, vol. 55, 2017, pp. 212-225.



GPs have been used to design the
Jungle Hawk Owl (JHO).

Source: MIT News
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GP was used in every step of the design process.

Requirements

analysis

Concept
Selection

Detail design +

performance
analysis
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GP was used to understand aircraft ‘limiters’.
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Gas-powered aircraft concept proves superior to solar.
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GPs is used to evaluate performance as detailed design
decisions are made.

Requirements /
Pylon fairing & =

I 3 Engine intake
a n a yS I S Longeron
Fuel tank

Pressure relief valve
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Some constraints are not GP-compatible.

/7 Constraining wing root

B B A bending moment:
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Signomial Programs are more general,
and expand the scope of physics we can handle...

Geometric program (GP): Signomial program (SP):
o Log-convex « Non-log-convex (difference of convex)
« Globally optimal e Locally optimal
o Noinitial guesses « Requires an initial guess
« Solved by IP, SQP etc. « Solved as a sequence of GPs

minimize fj(x)
subject to f;(x) < 1l,i=1,....m
g(x)=1i=1,..,p

minimize fo(x)
subject to f;(x) — h;(x) <0,2=1,....,m

...albeit with loss of mathematical guarantees.
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A number of papers expand on
SP-compatible modeling...

Conceptual Engineering Design and Optimization

Efficient Aircraft Multidisciplinary Design Optimization
Methodologies using Geometric Programming and Sensitivity Analysis via Signomial Programming
by
. Martin A. York,* Berk Oztiirk,* Edward Burnell,* and Warren W. Hoburg®
Berk Oztiirk Massachuseits Institute of Technology, Cambridge, Massachusetts 02139

DOI: 10.2514/1.J057020

Submitted to the Department of Aeronautics and Astronautics
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requirements for the degreeof Turbofan Engine Sizing and Tradeoff Analysis via
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Solar and Gas Powered Long-Endurance Unmanned Aircraft Mt A, Yok Ween W, Hobisg and Mok Drclsé

Slzmg via Geometric Programmlng Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
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Michael Burton* and Warren Hoburg®
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

DOI: 10.2514/1.C034405

AR convex B B Massachusetts
mmm engineering I I Institute of
A group Technology



20

ALGORITHMS
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For GPs, the power of log transformation is clear.

Without log transformation

With log transformation

No analytical gradients Analytical gradients

No analytical gradients

Solver Initial f(x) t n f(x) t n J(x) t n
type guess [N] [s] [-] [N] [s] [-] [N] [s] [-]
IP All'l’s 303.14 9.8 2725 1.2802e-06(e)  1436.8 300000 303.07 0.2 28
IP Nearopt. 303.14 0.2 105 303.14 0.2 90 303.07 0.2 14
P 0.0001601(1) 852.2 227857 0.00016007(e) 1225.3 300000 303.07 0.2 19
IP 303.14 3.2 11562 593.76 ar.d 10530  303.07 0.1 20
IP 9.9955e-07 70.0 24621 303.14 17.4 5039 303.07 0.1 19
SQP All 1’s 303.14 0.1 94 303.14 0.1 274 303.07 0.1 20
SQP Nearopt. 304.95 0.0 23 304.95 0.0 23 303.07 0.1 9
SQP 337.79 0.2 83 337.79 0.0 83 303.07 0.1 12
SQP 438.66 1.2 6353 438.66 0.1 83 303.07 0.1 11
SQP 337.85 0.1 72 337.85 0.0 72 303.07 0.1 17
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Borrowed from: Kirschen, P. G., and Hoburg, W. W., “The Power of Log
Transformation: A Comparison of Geometric and Signomial Programming with
General Nonlinear Programming Techniques for Aircraft Design Optimization,”
AIAA SciTech 2018.
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..but SPs are non-log-convex. Simple to (locally) convexify.

Signomials are
difference of

. Monomial approx. of
posynomials.

RHS makes signomial
The best local

s(x) <0 into posynomial. .
p(x) — q(z) <0 monomial approx. of
p(x) < q(x) p(x) < 4(x;x°) posynomial is known.
p(x) S [T\
PO e =) T (2)
70 %0) q(x)|x0 = g( )le 20
3:? dq
Borrowed from: Kirschen, P. G., and Hoburg, W. W., “The Power of Log ﬂ';z‘ — 0
Transformation: A Comparison of Geometric and Signomial Programming with X ) 83’}1

General Nonlinear Programming Techniques for Aircraft Design Optimization,”
AR convex AIAA SciTech 2018. I I I

[ engineering Theory: Lipp, T., and Boyd, S., “Variations and extension of the convex — concave
procedure,” Optimization and Engineering, vol. 17, 2016, pp. 263—-287.
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Infeasible Region
16> :

10"

— Signomial Constraint

Cp

1072

a) Non-convex signomial inequality drag constraint

York, M. A., Oztiirk, B.,
Burnell, E., and Hoburg, W.
W., “Efficient Aircraft
Multidisciplinary Design
Optimization and Sensitivity
Analysis via Signomial
Programming,” pp. 1-16.
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Infeasible Region

— Signomial Constrain
- - GP Approximation

10!

— Signomial Constraint
-~ GP Approximation

Infeasible Region

102 107 10°
CL

¢) Convex approximation about C; =0.20

10t 10°

b) Convex approximation about C; =0.05

Posynomial approx. of
signomial is
in the interior
of feasible region of the
signomial.



SPs can be solved as a sequence of GPs.

Make initial

guess.

o

Make local GP

approximation

Solve local GP
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ND, Lit1 = Tj.

Az < reltol?

Yes.

Solution z,
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Relaxations help
if initial guess/lack of sparsity are problematic.

minimize f(x,u)

s.t. pi(x,u) —q;(x,u) <0, 2=1,...,m

Relaxed m
constants minimize [H h ] f(x,v)
g=1
s.t. pi(x,v) —qi(x,v) <0, i=1,...,m
Uq N
— L Sy 2 L t=15ens 5
Si
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Approximations of non-log-affine equalities are
somewhat tractable.

107!

* Only log-affine equalities
(monomials in geometric
problem) are ever convex.

S * Work by Opgenoord shows
monomial approx. works
with signomial qualities.

2 * However, there are limits...
10707 107 10°
CL

Ay convex Opgenoord, M. M. J,, Cohen, B. S., and Hoburg, W. W., “Comparison of BB Massachusetts

mm engineering Algorithms for Including Equality Constraints in Signomial I Institute of

- group Programming,” ACDL Technical Report, TR-2017-1, 2017, pp. 1-23. I I Technology



Equalities are a last resort.

* To be used when the pressure on variables is not clear.

P P \LR/s T
L (_) I . Y
RT Pg T

\ ) | }
| |

Monomial equalities, Neysgighos ial
Implemented without approximation i g .
gn@alaléqlﬁcwallty

relaxation?

Example from : York, M. A., Hoburg, W. W., and Drela, M., “Turbofan
ARy convex Engine Sizing and Tradeoff Analysis via Signomial Programming,” I I I W B Massachusetts

== engineering Journal of Aircraft, vol. 55, 2018. I I Institute of
A group Technology



The log transformation is also essential for SPs.

Without log transformation

With log transformation

No analytical gradients Analytical gradients

No analytical gradients

Solver Initial f(x) t n f(x) t n f(x) t n

type guess [N] [s] [-] [N] [s] [-] [N] [s] [-]
IP All1’s  0.00029284(i) 316.6 73654 9.5991e-05(e) 1232.5 300000 4536.2 04 103
IP Near opt. 4543.6 10.0 1939 4543.6 5.8 1694 4536.2 0.3 61

IP 4543.6 9.7 2006 4543.6 28.4 5025 4536.2 04 97
IP 4543.6 300.5 55821 11062 429.5 115141 4536.2 0.3 68
SQP All 1’s 21.3(1) 0.1 13 -2.5512e-05(1) 0.1 32 4536.2 0.0 51

SQP Near opt. 4547.9 0.1 34 4547.9 0.1 48 4536.2 0.0 25
SQP 3.4751e+06 33 112 1.0339e+06 1.0 486 4536.2 0.1 43
SQP 5132.1 0.4 136 5619.9(1) 0.0 2 4536.2 0.1 30
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Borrowed from: Kirschen, P. G., and Hoburg, W. W., “The Power of Log
Transformation: A Comparison of Geometric and Signomial Programming with
General Nonlinear Programming Techniques for Aircraft Design Optimization,”
AIAA SciTech 2018.
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APPLICATIONS
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SP models can be arbitrarily complex.
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Figure 4-1: Hierarchy of the presented aircraft model. Models that include sizing variables York, M. A., Oztiirk, B., Burnell, E., and Hoburg, W. W., “Efficient
are bolded while models that include performance variables are italicized. There are models Aircraft Multidisciplinary Design Optimization and Sensitivity 30
that contain both kinds of variables. Analysis via Signomial Programming,” pp. 1-16.



GPs - trees. SPs = graphs.

Normalized flow rate Normalized pipe diameter

7000 7000
6000 |- 1 : 6000 |
- Hanoi water
5000 5000 | 1} r" | distribution
4000 a00ol & benchmark from
University of Exeter

3000 | 3000 .

- — . < Centre for Water
2000 | 2000 | 1 l ] Systems
1000} i 1000}

6 2060 4060 6060 8060 6 20‘00 4060 6060 8060

e Recent work to expand scope of [Perelman, 2015].
e Conservation of mass and momentum. Non-linear edge costs.
e Graphs can be scaled arbitrarily to test future algorithms.

ARy convex B B Massachusetts
. engineering Perelman, L. S., and Amin, S., “Control of tree water networks: A geometric Institute of
W group programming approach,” American Geophysical Union, 2015. Technology



 We expanded framework to SPs, with promising results.

Optimization under uncertainty

* [Saab, 2018] used principles from robust LP to formulate approximate robust GPs.

Choose
methodology

Formulate
local RGP

» Solve local RGP

Solve deter- Lo Make local GI?
ministic SP approximation
No, ripy1 = 7.

Ax < reltol?

Yes.

Solution x,

Figure 3: A block diagram showing the steps of solving an RSP,
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1Saab, A., Burnell, E., and Hoburg, W. W., “Robust Designs via Geometric

Programming,” Society for Industrial and Applied Mathematics, 2018, pp. 1-23.
20zturk, B., and Saab, A., “Optimal Aircraft Design Decisions under Uncertainty

via Robust Signomial Programming,” AIAA Aviation 2019 Forum, 2019.

Uncertainty Set Scaling Factor T’

(b) Elliptical Uncertainty Set
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Overview: SPs are powerful in conceptual engineering
design, but focused research is required on:

* Optimality guarantees, or good lower bounds
* Approximations for equalities
— Quantify when/why they are problematic.
— Perhaps give U/L approximations another shot.
* Better solution heuristics given naive initial guesses.
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AW Convex
I

- Engineering

Please find our engineering design optimization
packages and models at:
https://github.com/convexengineering

This work is powered by:
GPkit: .../gpkit
gpfit: ../gpfit
robust: ../robust (in development)
Mosek Version 8.1.0.80
aw convex Looking forward to your questions! III. W Massachusetts

mmm engineering I I Institute of
A group Technology
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4/10/2036

We are motivated to address challenges in

conceptual design.

Problem characteristic Common design practice

Multi-

.. Collaborative optimization
disciplinary

Data Heavy reliance on
deprived experienced engineers

Risky Non-rigorous uncertainty
capturing

amy convex
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Design outcome

Suboptimal

Dogmatic

Office [3]1

Conservative
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Slide 36

Office [3]1 | agree with the claims you make here, and | like where you're going, but | think this slide ends up being weak
because it comes across as being your claims/opinions not backed up by any data or sources. | wouldn't create
such a linear mapping from "problem characteristic" to "design outcome" and group into three categories.
Rather, I'd turn this into a broad landscape of optimization methods (UQ, MDO, etc etc) and focus more on the
challenges (multidisciplinary, uncertainty, *non-convexity*, etc) than on the algorithms. Your previous two slides
already convince me that there's a problem/challenge. Story wise, this slide can focus on helping your
optimization-inclined audience to understand what mathematical challenges are driving the problem.

Microsoft Office User, 8/2/2019



Key question:
how to improve the conceptual design process?

— Make the constraints as general as possible.

— Solve data-deprived problems through physics:
e Aim to understand tradeoffs, not just figures.

* Leverage data where possible.

— Capture uncertainty in a tractable manner.

ARy convex BB Massachusetts
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Other constraints can be approximated.

Geometric averages Wae = v Winitiat Wiinal
. 1% ZZ 23 Z3
Taylor expansions fuel; s L PN
y P W, = e T T e Ty
: (zcg + Ln)*(va, + B?)
1 > _
Dummy variables = O, G2
And so on...
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Equality relaxations make problem GP-compatible

Traditional: New approach: relaxed
potential and flow functions potential and flow functions

minimize > cuqrfy. minimize > cuqef ) can M+ cib ™
H.p.y P b kEEpy keE, i€Ng
Hi=7H; Vk € E,, Valve operation H;=y,H; Vk € E,,
H;+hi=H; Vk € Ep, Flow pressure loss Hi+he <H Vk ek,
H;=pHi vk € Epy, Pump operation Hj=FiHi Vk € Epu,
H <H < Hi Vi € Ny, Head pressure bounds H,ZH & Hi Vi € Ng,
1< B < B Vk € Epy, Pump setting bounds 1< B < By Vk € Epy,
0<y <1 Yk € E,, Valve setting bounds 0<7p <1 Vk € Ey,
h«=Rkqj; vk € E, Flow pressure loss h«=Rkqj Vk € E,
ARy convex BB Massachusetts
mmm engineering I I Institute of
A group Technology



SIGNOMIAL PROGRAMMING UNDER
UNCERTAINTY
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Inability to handle parametric uncertainty results in
conservative aerospace designs.

100

50

53]
[:.
Femar,

Payload (klb)

Actual usage

= r||.-':'

AZ00-E00 Might
e blel
payload-range

2000 3000

Range (nm)

4000

5000

1 Max zero-fuel

weight

Max takeoff
weight

Max fuel
capacity

How can we use
principles of

robust optimization
to improve on
legacy design
methods?
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ldea: tractable optimization under uncertainty
using SPs.

* Combine principles from robust linear programming with GPs.
— Separate posynomials into two-term posynomials, WLOG.
— Robustify conservative PWL approximation of posynomials.

 Augment SP heuristic with robust approximations of GPs.

ARy convex BB Massachusetts
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The robust counterpart transforms OUU to
deterministic optimization problem.

Optimization over:

min fo(x)

sk il a2l Vo el =1 s ) Infinite number of constraints

min fo(x)

8.5 max julz,u) <0, 3=1,..., n Finite number of constraints

min fo(x)

s.t. max f;(r,u) <0, i=1,..., n A well-defined set
u
Jul <T
ARy convex I BB Massachusetts
mmm engineering I III Institute of
A group Technology



We augment the SP solution heuristic.

Make initial

guess.

T

=}

Make local GP

approximation

Solve local GP

No, ziy1 = z;.

J
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Az < reltol?

l Yes.

Solution x,,

Choose
methodology

Formulate

local RGP

) Solve local RGP

o

Solve deter- i‘ffﬂ> Make local GIP
ministic SP approximation
No, z;41 = 5.

Az < reltol?

Solution x,

Figure 3: A block diagram showing the steps of solving an RSI.

Yes.
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Uncertainty sets considered

Box (L-e° norm)

More conservative than margins.

]

amy convex
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> 7 Margins optimize
on a corner of
the hypercube!

o=

Elliptical (L-2 norm)

A less conservative candidate!

A

AR
N
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RSP successfully mitigates probability of failure.

Total fuel weight (N)

--- Total fuel weight
—— Prob. of Fail.

Probability of Failure

[ad
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(a) Box Uncertainty Set
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(b) Elliptical Uncertainty Set

For I =1, the elliptical design spends 14% less
fuel than the box design, while protecting
against the same uncertainty!
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