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What to expect

• A method that:
– turns stochastic design optimization problems into deterministic ones.
– solves sparse non-linear problems (1:1 variables/constraints ratio).
– solves in <1s for a conceptual design problem with  ̴150 variables.
– has sub-linear solution time with number of variables. 
– provides probabilistic guarantees of constraint satisfaction.

• Insights into:
– weaknesses of legacy methods of design under uncertainty. 
– how to reduce design conservativeness when faced with uncertainty.
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Motivation: understanding how uncertainty influences 
design decisions. 
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Max zero-fuel 
weight

Max takeoff 
weight

Max fuel 
capacity

How about:
- Technological 

capabilities?
- Manufacturing 

quality?
- Regulatory 

environment? 



Legacy methods are failing to adequately capture 
the risk/performance tradeoff. 

• Margins
• Multimission design
• Off-nominal ‘checking’

• Not always intuitive.
• No quantitative measures of 

reliability.
• Heavy reliance on experienced 

engineers.
• Too conservative!
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There is no such thing as 
a free lunch!



We need more mathematical rigor 
in design under uncertainty.
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• Guarantees of constraint satisfaction. 
• Reduced sensitivity of designs to uncertain parameters. 
• Better understanding of tradeoff of risk and performance. 

Ultimate goal » Less conservative designs that are robust.



Robust optimization is a tractable method for OUU.
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Robust 
optimization 

model

Optimization 
‘under 

certainty’

Model

The good:
- Monolithic and fast. 
- Probabilistic guarantees. 
- Tractable.

The bad:
- Doesn’t make full use of 

distributional information.
- Optimizes worst case. 

The (beautiful) and ugly:
- Requires specific formulations (LP, 

QCQP, SDP, GP, SP). Objective space

u1

u2

u3

u ϵ U, 
eg. |u| ≤ Γ

*Adapted from: Tennøe, S., Halnes, G., and 
Einevoll, G. T., “Uncertainpy : A Python toolbox for 
uncertainty quantification and sensitivity analysis 
in computational neuroscience .,” 2018, pp. 1–52.



MATHEMATICAL BACKGROUND
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GPs and SPs are practical to solve general NLPs.
Geometric program (GP):

● Log-convex
● Globally optimal
● No initial guesses
● Sensitivities through the dual

Signomial program (SP):
● Non-log-convex (difference of convex), 

and thus more general
● Solved as sequential GPs
● Solves with initial vector of 1’s
● Locally optimal

Formulated in:
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eg.



Log-log transformation to turn NLP into convex 
problem 

Primal 
form 

monomial

Exponential 
form 

monomial

Exponential 
form 

posynomial

Primal 
form 

posynomial

*Hoburg, 2013.  
Aircraft Design 
Optimization as a 
Geometric Program 
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The robust counterpart transforms OUU to 
deterministic optimization problem. 
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Optimization over:

Infinite number of constraints

Finite number of constraints

A well-defined set



Mathematical moves to obtain RSPs

• LPs have tractable robust counterparts.
• Two-term posynomials are LP-approximable.
• All posynomials are LP-approximable.
• GPs have robust formulations.
• RSPs can be represented as sequential RGPs.
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LPs have tractable robust counterparts. 
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Robust 
counterpart

I tip my hat to the editor!

A tractable SOCP!



Takeaway: Given that an SP-compatible formulation 
exists, we can form a tractable robust SP!
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Uncertainty sets considered

Box (L-∞ norm)
More conservative than margins.

Elliptical (L-2 norm)
A less conservative candidate!
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Other norm sets also valid.

Margins optimize on a 
corner of the hypercube!



APPLYING RO TO CONCEPTUAL UAV PROBLEM

4/10/2020

15



SP model captures important 
multidisciplinary tradeoffs.

• Unmanned, gas-powered aircraft
• Without uncertainty: 176 variables and 154 constraints
• Monolithic: optimizes aircraft and flight trajectory concurrently 

through disciplined SP form
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Fuselage
• Ellipsoidal
• Fuel and payload
• Profile drag

Wing
- Structure
- Fuel volume
- Profile drag
- Stall constraint

Engine
- Data-based sizing
- Lapse rate
- BSFC fits
- T/O and TOC constraints



Uncertainties reflect ‘engineering intuition’. 
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*100 MC simulations over 3σ truncated Gaussians



RSP successfully mitigates probability of failure.
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For Γ = 1, the elliptical design spends 14% less 
fuel than the box design, while protecting 
against the same uncertainty! 



Understanding multiobjective tradeoffs is key to risk 
mitigation.  

4/10/2020

20



Goal programming: risk is a global design objective. 
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Standard RO form Goal programming form

Suggests a good formulation for 
multi-objective design space 
exploration:



Contributions

• A tractable RSP formulation for design over uncertain 
parameters

• Demonstration of 
– Probabilistic guarantees of RSPs
– Less conservative designs through RSP than legacy methods

• A goal programming formulation for multiobjective
optimization
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Please find our engineering design optimization 
packages and models at:

https://github.com/convexengineering

This work is powered by: 
GPkit:       …/gpkit
robust:    …/robust (in development)

Mosek Version 8.1.0.80
Looking forward to your questions!
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Convex 
Engineering



BACK-UP SLIDES
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Examples of constraints
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How can we 
tackle the

schedule and 
cost explosion
of aerospace 
programs?  
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We are approaching the limits of 
the 2nd law of thermodynamics.
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Conflicting evidence? 



Cost and schedule are highly correlated. 
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The good:
- Makes best use of available data.
- Extremely general.

The bad:
- Not deterministic.
- ‘Loose’ probabilistic guarantees. 

The ugly:
- Combinatorics/computational cost of 

PDF propagation through NLPs.

Stochastic optimization operates over PDFs.
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*Adapted from: Tennøe, S., Halnes, G., and 
Einevoll, G. T., “Uncertainpy : A Python toolbox for 
uncertainty quantification and sensitivity analysis 
in computational neuroscience .,” 2018, pp. 1–52.

Stochastic 
optimization

Model

Optimization 
‘under 

certainty’

Model

Objective space



+3x +

=[                 or                     | Mission + sizing constraints]

SPs can be extremely complex (TASOPT).

● Commercial aircraft 
model of similar 
fidelity to TASOPT 
(5000 variables). 

● Built on configuration 
hierarchies

● Multi-point design
● Visual debugging of 

constraints
● ESP integration for 

potential HF 
simulations?



Exponential form of GP
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RSP formulations exist for all SP-compatible problems.
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Two-term posynomials are LP-approximable. 
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Hsiung, K. L., Kim, S. J., and Boyd, S., “Tractable approximate robust geometric 
programming,” Optimization and Engineering, vol. 9, 2008, pp. 95–118.

Approximation error vs. degree of PWL approximation r.



Given two-term posynomials are LP-approximable1, 
all posynomials must then be LP-approximable.
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Saab, A., Burnell, E., and Hoburg, W. W., “Robust Designs Via Geometric 
Programming.” 2018. ArXiv:1808.07192

The recipe: Simple example:

1. Hsiung, K. L., Kim, S. J., and Boyd, S., “Tractable approximate robust geometric 
programming,” Optimization and Engineering, vol. 9, 2008, pp. 95–118.



Uncoupled posynomials are robustified separately.
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Three approximations exist for RGP.
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Increasingly
conservative

- Simple conservative
- Maximizes each monomial term 

separately

- Linearized perturbations
- Separates large posynomial into 

decoupled posynomials
- Robustifies smaller posy’s using 

RLO techniques

- Best pairs
- Separates large posynomial into 

decoupled posynomials
- Finds least conservative 

combination of monomial pairs

Uncertain coefficients only

Uncertain coefficients 
and exponents

Saab, A., Burnell, E., and Hoburg, W. W., “Robust 
Designs Via Geometric Programming.” 2018. 
ArXiv:1808.07192



Convex programs allow flexibility in objectives.
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Future work

● How do we use our understanding of the risk of constraint 
violation?

Not all constraint violation is equal! 
● How does  RO change our understanding of the benefits of 

adaptable designs? 
(eg. modular, morphing, adaptively manufactured designs and 
design families)

● How can we gather data about parameters to best reduce 
uncertainty in feasibility/performance of designs? 

38


