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What to expect

* A method that:
— turns stochastic design optimization problems into deterministic ones.
— solves sparse non-linear problems (1:1 variables/constraints ratio).
— solves in <1s for a conceptual design problem with ~150 variables.
— has sub-linear solution time with number of variables.
— provides probabilistic guarantees of constraint satisfaction.

* Insights into:
— why conceptual design is key to reducing program risk.
— how to reduce design conservativeness when faced with uncertainty.
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MOTIVATING CONCEPTUAL DESIGN
UNDER UNCERTAINTY
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Years from start to Initial Operational Capability
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How can we
tackle the
schedule and
cost explosion
of aerospace
programs?



We are approaching the limits of
the 2"d [aw of thermodynamics.
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Years from Contract to First Flight
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... but we are uncertain about
what missions we design aircraft for.
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1 Max zero-fuel

How about:

-  Technological
capabilities?

- Manufacturing
quality?

- Regulatory
environment?



Legacy methods are failing to adequately capture
the risk/performance tradeoff.

* Margins

* Multimission design

e Off-nominal ‘checking’
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Not always intuitive.

No quantitative measures of
reliability.

Heavy reliance on experienced
engineers.

Too conservative!

There is no such thing as

a free lunch!



Optimization under uncertainty can dampen this
trend!

* Confidence in analysis tools will increase.
* Design cycle time, cost, and risk will be reduced.

e System performance will increase while ensuring reliability
requirements are met.

* Designs will be more robust.

We hope...
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Stochastic optimization operates over PDFs.

Optimization
‘under
certainty’

Model

Stochastic
optimization

Model

i

——""‘ |

Objective space

The good:
- Makes best use of available data.
- Extremely general.

The bad:
- Not deterministic.
- Not conservative.

The ugly:

- Combinatorics/computational cost of
PDF propagation through NLPs.
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Optimization
‘under
certainty’

Model

Robust
optimization
model

i

Objective space

Robust optimization operates over sets.

The good:

- Conservative, with probabilistic
guarantees.

- Tractable.

The bad:

- Doesn’t make full use of
distributional information.

- Optimizes worst case.

The (beautiful) and ugly:

- Requires specific formulations (LP,

QCQP, SDP, GP, SP).
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MATHEMATICAL BACKGROUND
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Geometric programming (GP) is
accurate and practical to solve general NLPs

minimize po(x) * Advantages:
subjectto pi(x) <1, i=1,..,n,, o Ability to capture |
m) =1, i=1,..n real-world complexity
. o Solution speed
mx)=c| [x/,  es L=3pV2CLS o Global optimality
=1 e e
o Sensitivities
K n .
p@ =S e[ 5%,  P=Ptlpy? * Disadvantages:
= o Stringent formulation

o Explicit constraints
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Log-log transformation to turn NLP into convex
problem

a,,

Primal Set Exponential
form \ form

a<t .
monomial / monomial

u x=logu

(a) Scalar monomials, cu® (b) Corresponding log-space monomials, log ¢ + ax

Primal Exponential
form form
posynomial posynomial

*Hoburg, 2013.
Aircraft Design

v u x=logu Optimization as a
(¢) Scalar posynomials, Y, eju®* )(18);‘(]1‘['[‘5]]()1l(lillg’ log-space posynomials, Geometric Program
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Signomial Programs are more general.

Geometric program (GP):

« Log-convex .
o Globally optimal .
« Noinitial guesses .
« Solved as exponential cone program. .

minimize fo(x)
subject to f;(x) < 1,1

3
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Signomial program (SP):

Non-log-convex (difference of convex)

Solved as sequential GPs
Solves with initial vector of 1’s

Locally optimal

minimize fo(x)

subject to f;(x) — h;(x) <0,i=1,...., m

Formulated in:

GrP



SPs can be extremely complex (TASOPT).

Mission

/\\Aircraft

Mission Profile ~ Atmosphere  Performance

ing VT HT Fuselage Engine

Aircraft  Performance  Performance Performance Performance Performance

T T

Wing VT HT Fuselage Engine

Figure 4-1: Hierarchy of the presented aircraft model. Models that include sizing variables
are bolded while models that include performance variables are italicized. There are models
that contain both kinds of variables.

Commercial aircraft
model of similar
fidelity to TASOPT
(5000 variables).
Built on configuration
hierarchies
Multi-point design
Visual debugging of
constraints

ESP integration for
potential HF
simulations?



minimize  fy (u

)
subject to  fi (u) < 1,
) =1

h{u) = EbH] R
flu) = K by

= ) k1€

{
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The robust counterpart transforms OUU to
deterministic optimization problem.

Optimization over:

min fo(x) Infinite number of constraints
s.t. filrx,u) <0, Yueld, i1=1,..., n

min fo(x)

s.t. max f;(r.u) <0, i=1,....,n
=

Finite number of constraints

min fo(x)
s.t. max fi(z,u) <0, i=1,..., n
(7]

A well-defined set

lul| <T

{
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Mathematical moves to obtain RSPs

e LPs have tractable robust counterparts.
 Two-term posynomials are LP-approximable.
* All posynomials are LP-approximable.

* GPs have robust formulations.

* RSPs can be represented as sequential RGPs.
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LPs have tractable robust counterparts.

minimize ¢ x
subject to a;x < b;, Va,clU;, Vi=1,...,m,
U={(ai,....,an) :a;=a +ANu;, i=1,...,m, |lullz <p},

| tip my hat to the editor!

Robust
counterpart

mininize c x

subject to  alw < b; — pl|Asx||2, Vi=1,...,m.

A tractable SOCP!

{
A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Operations Research Letters,
AEROASTRO 25(1):1-13, 1999.



Two-term posynomials are LP-approximable.

A0

Corollary 1 For r > 3 the unique best r-term PWL convex lower approxima-
tion h,.: R? — R of the two-term log-sum-exp function is

h,(y1,y2) =max{yi,a;_,y1 +ajy2+bjl.a;_sy1 +a>y2+b5, ...,
ayyi+ay;_,y2+b;_5, 2} (24)

and the unique best r-term PWL convex upper approximation h, : R> — R is

he(y1, y2) =h, (1, y2) 4 €4 (), (25)

where a;, by, i =1, ...,r—2 are the coefficients of the segments of ¢ defined in (23).

APPITOXIITNALIOINT €1TOUT VS, Uegiece Ul FVVL dPpPIOUXITTIdLUUI T,

o Hsiung, K. L., Kim, S. J., and Boyd, S., “Tractable approximate robust geometric
AE ROAST RO programming,” Optimization and Engineering, vol. 9, 2008, pp. 95-118.
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All posynomials must then be LP-approximable.

The recipe: Simple example:

min  fy (x)

min f
s.t. Iggag {e““{g}“b“(q} + Etl} <1 Vi:K; >3 s.b. max {M; + Ms + M3+ My} <1
Mo {eam{q}ﬂbm(c) n et;\.} et ViiK >4 max { M5 + Mg} <1
CEZ
Vee2, .., K, —2 '
max { i et PO b < et i K > 3 min  f
- ) 1 '-‘t]-
max {zi‘ileaik(ﬁjm+b“;{§)} <1 Vi K; <2 s.t. max {_‘1:’1 + e } < ]
cez - max { M + €2} < e
max {f”rd + ,Url} < Etz
max { M + Mg} <1

{
Saab, A., Burnell, E., and Hoburg, W. W., “Robust Designs Via Geometric
Q AEROASTRO 4/10/2020

Programming.” 2018. ArXiv:1808.07192



Uncoupled posynomials are robustified separately.

P =M1+M2+M3+MA4+ M5+ M6
S1 S2 S3

t1 + 12+ 13 <1

mazr{S1} = max{M, + M3 + My} <t
max{Se} = max{My + M5} <t
max{Ss} = max{ Mg} < t3

mar{P} <1 <=

Figure 2: Partitioning of a large posynomial into smaller posynomials requires the addition of auxiliary
variables. S; are posynomials with independent sets of variables.

{
6 AEROASTRO 4/10/2020
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Increasingly
conservative

v
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- Simple conservative
- Maximizes each monomial term
separately

- Linearized perturbations
- Separates large posynomial into
decoupled posynomials
- Robustifies smaller posy’s using
RLO techniques

- Best pairs
- Separates large posynomial into
decoupled posynomials
- Finds least conservative
combination of monomial pairs

=

J |

Three approximations exist for RGP.

Uncertain coefficients only

Uncertain coefficients
and exponents

Saab, A., Burnell, E., and Hoburg, W. W., “Robust
Designs Via Geometric Programming.” 2018. 23
ArXiv:1808.07192



We augment the SP solution heuristic.

Choose
Solve deter- xo | Make local GI | methodology Formulate .
. : e . ' Solve local RGP
ministic SP approximation local RGP
No, zjt1 = @5. Az < reltol?

Solution z,,

Figure 3: A block diagram showing the steps of solving an RSP,

{
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RSP formulations exist for all SP-compatible problems.

Robust
Signomial
Programming
Determine
Requirements Modeling > SP compatible uncertainties | Distributional
Resources models information
Sienomial Model un-
o _—
Programming certainties
V vV
Optimal solution . Reformulate p Generate
Sensitivities "] constraints uncertainty sets

v
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More conservative than margins.

3
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Uncertainty sets considered

Box (L-o= norm)

CK

p=0C

Margins optimize on a
corner of the hypercube!

Other norms also valid.

Elliptical (L-2 norm)

A less conservative candidate!

R
L

p=2

p=1

]

p=

N
/
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APPLYING RO TO CONCEPTUAL UAV PROBLEM
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SP model captures important
multidisciplinary tradeoffs.

Unmanned, gas-powered aircraft
Without uncertainty: 176 variables and 154 constraints

Monolithic: optimizes aircraft and flight trajectory concurrently
through disciplined SP form

Wing Fuselage Engine
Structure * Ellipsoidal - Data-based sizing
Fuel volume * Fuel and payload - Lapse rate
Profile drag * Profile drag - BSFCfits

Stall constraint - T/0O and TOC constraints

3
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Uncertainties reflect ‘engineering intuition’.

Table 1: Parameters and Uncertainties (increasing order)

Parameters Description Value % Uncert. (30)
Swetratio wetted area ratio 2.075 3
e span efficiency 0.92 3
1 air viscosity (SL) 1.78 x 107" kg/(ms) 4
p air density (SL) 1.23 kg/m?3 5
Cr.s stall lift coefficient 1.6 5
k fuselage form factor 1.17 10
 fruse vt fuselage skin friction factor 0.455 10
Pp payload density 1.5 kg/m? 10
T airfoil thickness ratio 0.12 10
Nk ultimate load factor 3.3 15
Vinin takeofl speed 30 m/s 20
Wi, payload weight 6250 N 20
Wecoutr coee  Wing structural weight coefficient 2x 107" 1/m 20
| — wing surface weight coefficient 60 N/m? 20

v
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Table 2: SP Aircraft Optimization Results, for I' =1

Free variable Description Units No Uncert.  Margins Box Elliptical
L/D mean lift-to-drag ratio - 33.6 23.6 25.1 27.7
AR aspect ratio - 24.6 13.3 13.0 16.3
Re Reynolds number - 1.54 x 105  2.65 x 105 3.03 x 105 250 x 10°

S wing planform area m? 13.6 32.8 32.0 28.1
V mean fight velocity m/s 41.6 37.3 38.9 38.4
Thight time of flight hr 20.1 22.4 21.4 21.7
Wy wing weight N 2830 4760 4800 4480
Wi stre wing structural weight N 2010 4760 2670 2620
Wi surt wing skin weight N 820 2170 2120 1860
Wiyse fuselage weight N 250 314 288 279
VE avail total fuel volume m? 0.0759 0.146 0.154 0.136
VE fuse fuselage fuel volume m? 0.0394 0 0 0.0159
Y~ T TS SR ree O-L365 oL+ Ot5d 20
Objective metric Description Units |No Uncert.] = Margins Box Elliptical
Objective total fuel weight N 608 1170 1240 1090
E[Objective] expected total fuel weight N 572 964 976 856
o[Objective] std. dev. of fuel weight N 9 32 32 29
Plfailure] probability of failure % 94 0 0 0
{
AEROASTRO 4/10/2020
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RSP successfully mitigates probability of failure.

Sl N --- Total fuel weight \\
™~ —— Prob. of Fail. e

900 | L 0.8
= | :
= 850 | \ = 2
[=) \ Lo 0.6 L
T 8soof \ e =
= \ >
U 750} \ a =
= L 040
—_— - m
{8 700 e s
P 2 &

650 | : {02

‘xh
- e
s 1\‘-.
6001 -
. I I 1 i e 0.0
0.0 0.2 0.4 0.6 0.8 10

3
Q AEROASTRO

Uncertainty Set Scaling Factor I’

(a) Box Uncertainty Set

For [ =1, the elliptical design spends 14% less
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(b) Elliptical Uncertainty Set

fuel than the box design, while protecting
against the same uncertainty!
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Convex programs allow flexibility in objectives.

Objective Takeoff weight Engine weight Total cost Wing loading Total fuel Time cost  Aspect ratio  Cruise L/D

Takeoft weight 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fngine weight I.43 (.37 1.58 0.G3 (.95 [.85 3.06 1.00
Total cost I.0%9 2.26 .83 1.00 117 (.69 1.38 1.12
Wing loading 40.32 T3.87 15.25 0.11 45.32 2.58 (.60 A46.46
Total fuel 1.17 0.49 1.11 1.00 0.75 1.26 2.89 0.72
Time cost 4.63 101.82 3.24 1.00 9.95 (.40 (.40 8.37
Aspect ratio 3.91 51.28 4.01 0.37 11.59 (.82 0.06 12.31
Cruise L/T 1.3 2.67 1.14 0.74 0.97 1.21 2.69 (.58

Table 3: Non-dimensionalized variations in objective values with respect to the aircraft optimized for different
objectives. Objective values are normalized by the total fuel solution.

{
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Understanding multiobjective tradeoffs is key to risk

Total fuel
Total fuel

Total cost

Total cost
Total fuel

Takeoff wei@

Total cost

— nominal
— elliptical

mitigation.

Takeoff weight
Total fuel

Total cost

Mid-cruise L/D
Total fuel

Total cost

4/10/2020
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(a) Total fuel (b) Takeoff weight

(c) Total cost (d) Mid-cruise L/D



Goal programming: risk is a global design objective.

Standard RO form Goal programming form

min fy(x) max [

; .T. ; <0,2=1,...
s.t. max fi(.’.{.‘,’u) g D,_' 1= 13 R 7] ﬁ s.t mgx fz(ﬂi’,’lf:) = Oa?’ 13 y

Jul| <T
|ul| <T .
folx) (A +8)fs, 6>0
RO form r ) PoF Goal form ) T PoF
—4 _ _ _ -
g;}g 25;{}}3 ggj o o o Suggests a good formulation for
. D . . . .
020 0118  0.76 0.118 0.20 0.76 multi-objective design space
0.30 0.183 0.60 0.183 0.30 0.60 .
0.40 0.252 0.38 0.252 0.40 0.38 eXp|Orat|0n.
0.50 0.326 0.20 0.326 0.50 0.21
0.60 0.406 0.10 0.406 0.60 0.10 * .
() < (1+90; 0.0, 7=1.....m
0.70 0492  0.07 0.492 0.70 0.07 foj(x) < (A +05)fo5, 020, 5 =1....,
0.80 0.583 0.04 0.583 0.80 0.04
0.90 0.681 0.01 0.681 0.90 0.01
1.00 0.787 0.00 0.787 1.00 0.00

{
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Contributions

* A tractable RSP formulation for design over uncertain
parameters

* Demonstration of
— Probabilistic guarantees of RSPs
— Less conservative designs through RSP than legacy methods

* A goal programming formulation for multiobjective
optimization

* New opportunities in aerospace conceptual design through RO

3
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Future work

« How do we use our understanding of the risk of constraint
violation?
Not all constraint violation is equal!
« How does one restrict the power of nature conservatively?
« How does RO change our understanding of the benefits of
adaptable designs?
(eg. modular, morphing, adaptively manufactured designs and
design families)
« How can we gather data about parameters to best reduce
uncertainty in feasibility/performance of designs?

3
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BACK-UP SLIDES
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Cost and schedule are highly correlated.

r Development Cost = 1.33 x (0.03 x Dev Time + :L.36)'ﬂr
$50B .,

G @
R o4
m m
1
. Ay
‘-——
\ —

it
u]‘li. ‘ |

I
'_-

(development cost ($M))™(]

p——
=
R
—
&
—
—
—
| e——
—
e

R-id
o
c. - v
—-

24 48 72 96 120 144 168 192 216 240
Development Time (Months)

{
Q AEROASTRO 4/10/2020



