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What to expect

• A method that:

– turns stochastic design optimization problems into deterministic ones.

– solves sparse non-linear problems (1:1 variables/constraints ratio).

– solves in <1s for a conceptual design problem with  ̴150 variables.

– has sub-linear solution time with number of variables.

– provides probabilistic guarantees of constraint satisfaction.

• Insights into:

– why conceptual design is key to reducing program risk. 

– how to reduce design conservativeness when faced with uncertainty.
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MOTIVATING CONCEPTUAL DESIGN 
UNDER UNCERTAINTY
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How can we 
tackle the

schedule and 
cost explosion
of aerospace 
programs?  
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We are approaching the limits of 
the 2nd law of thermodynamics.
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Conflicting evidence? 



… but we are uncertain about 
what missions we design aircraft for.
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Max zero-fuel 
weight

Max takeoff 
weight

Max fuel 
capacity

How about:
- Technological 

capabilities?
- Manufacturing 

quality?
- Regulatory 

environment? 



Legacy methods are failing to adequately capture 
the risk/performance tradeoff. 

• Margins

• Multimission design

• Off-nominal ‘checking’

• Not always intuitive.

• No quantitative measures of 
reliability.

• Heavy reliance on experienced 
engineers.

• Too conservative!
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There is no such thing as 
a free lunch!



Optimization under uncertainty can dampen this 
trend!
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• Confidence in analysis tools will increase.

• Design cycle time, cost, and risk will be reduced.

• System performance will increase while ensuring reliability 
requirements are met.

• Designs will be more robust.

We hope…



The good:
- Makes best use of available data.
- Extremely general.

The bad:
- Not deterministic.
- Not conservative. 

The ugly:
- Combinatorics/computational cost of 

PDF propagation through NLPs.

Stochastic optimization operates over PDFs.
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*Adapted from: Tennøe, S., Halnes, G., and 
Einevoll, G. T., “Uncertainpy : A Python toolbox for 
uncertainty quantification and sensitivity analysis 
in computational neuroscience .,” 2018, pp. 1–52.

Stochastic 
optimization

Model

Optimization 
‘under 

certainty’

Model

Objective space



Robust optimization operates over sets.
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Robust 
optimization 

model

Optimization 
‘under 

certainty’

Model

The good:
- Conservative, with probabilistic 

guarantees. 
- Tractable.

The bad:
- Doesn’t make full use of 

distributional information.
- Optimizes worst case. 

The (beautiful) and ugly:
- Requires specific formulations (LP, 

QCQP, SDP, GP, SP). Objective space

u1

u2

u3

u ϵ U, 
eg. |u| ≤ Γ

*Adapted from: Tennøe, S., Halnes, G., and 
Einevoll, G. T., “Uncertainpy : A Python toolbox for 
uncertainty quantification and sensitivity analysis 
in computational neuroscience .,” 2018, pp. 1–52.



MATHEMATICAL BACKGROUND
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Geometric programming (GP) is 
accurate and practical to solve general NLPs

• Advantages:
o Ability to capture 

real-world complexity
o Solution speed
o Global optimality
o Sensitivities

• Disadvantages:
o Stringent formulation
o Explicit constraints
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eg.



Log-log transformation to turn NLP into convex 
problem 

Primal 
form 

monomial

Exponential 
form 

monomial

Exponential 
form 

posynomial

Primal 
form 

posynomial

*Hoburg, 2013.  
Aircraft Design 
Optimization as a 
Geometric Program 

4/10/2020

13



Signomial Programs are more general.
Geometric program (GP):

● Log-convex
● Globally optimal
● No initial guesses
● Solved as exponential cone program.

Signomial program (SP):
● Non-log-convex (difference of convex)
● Solved as sequential GPs
● Solves with initial vector of 1’s
● Locally optimal

Formulated in:
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+3x +

=[                 or                     | Mission + sizing constraints]

SPs can be extremely complex (TASOPT).

● Commercial aircraft 
model of similar 
fidelity to TASOPT 
(5000 variables). 

● Built on configuration 
hierarchies

● Multi-point design
● Visual debugging of 

constraints
● ESP integration for 

potential HF 
simulations?



Exponential form of GP
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The robust counterpart transforms OUU to 
deterministic optimization problem. 
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Optimization over:

Infinite number of constraints

Finite number of constraints

A well-defined set



Mathematical moves to obtain RSPs

• LPs have tractable robust counterparts.

• Two-term posynomials are LP-approximable.

• All posynomials are LP-approximable.

• GPs have robust formulations.

• RSPs can be represented as sequential RGPs.
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LPs have tractable robust counterparts. 
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Robust 
counterpart

I tip my hat to the editor!

A tractable SOCP!



Two-term posynomials are LP-approximable. 
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Hsiung, K. L., Kim, S. J., and Boyd, S., “Tractable approximate robust geometric 
programming,” Optimization and Engineering, vol. 9, 2008, pp. 95–118.

Approximation error vs. degree of PWL approximation r.



All posynomials must then be LP-approximable.
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Saab, A., Burnell, E., and Hoburg, W. W., “Robust Designs Via Geometric 
Programming.” 2018. ArXiv:1808.07192

The recipe: Simple example:



Uncoupled posynomials are robustified separately.
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Three approximations exist for RGP.
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Increasingly
conservative

- Simple conservative
- Maximizes each monomial term 

separately

- Linearized perturbations
- Separates large posynomial into 

decoupled posynomials
- Robustifies smaller posy’s using 

RLO techniques

- Best pairs
- Separates large posynomial into 

decoupled posynomials
- Finds least conservative 

combination of monomial pairs

Uncertain coefficients only

Uncertain coefficients 
and exponents

Saab, A., Burnell, E., and Hoburg, W. W., “Robust 
Designs Via Geometric Programming.” 2018. 
ArXiv:1808.07192



We augment the SP solution heuristic.
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RSP formulations exist for all SP-compatible problems.
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Uncertainty sets considered

Box (L-∞ norm)

More conservative than margins.

Elliptical (L-2 norm)

A less conservative candidate!
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Other norms also valid.

Margins optimize on a 
corner of the hypercube!



APPLYING RO TO CONCEPTUAL UAV PROBLEM
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SP model captures important 
multidisciplinary tradeoffs.

• Unmanned, gas-powered aircraft
• Without uncertainty: 176 variables and 154 constraints
• Monolithic: optimizes aircraft and flight trajectory concurrently 

through disciplined SP form
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Fuselage

• Ellipsoidal

• Fuel and payload

• Profile drag

Wing

- Structure

- Fuel volume

- Profile drag

- Stall constraint

Engine

- Data-based sizing

- Lapse rate

- BSFC fits

- T/O and TOC constraints



Uncertainties reflect ‘engineering intuition’. 
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RSP successfully mitigates probability of failure.
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For Γ = 1, the elliptical design spends 14% less 
fuel than the box design, while protecting 
against the same uncertainty! 



Convex programs allow flexibility in objectives.
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Understanding multiobjective tradeoffs is key to risk 
mitigation.  
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Goal programming: risk is a global design objective. 
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Standard RO form Goal programming form

Suggests a good formulation for 
multi-objective design space 
exploration:



Contributions

• A tractable RSP formulation for design over uncertain 
parameters

• Demonstration of 

– Probabilistic guarantees of RSPs

– Less conservative designs through RSP than legacy methods

• A goal programming formulation for multiobjective
optimization

• New opportunities in aerospace conceptual design through RO
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Future work

● How do we use our understanding of the risk of constraint 
violation?

Not all constraint violation is equal! 
● How does one restrict the power of nature conservatively?
● How does  RO change our understanding of the benefits of 

adaptable designs? 
(eg. modular, morphing, adaptively manufactured designs and 
design families)

● How can we gather data about parameters to best reduce 
uncertainty in feasibility/performance of designs? 
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BACK-UP SLIDES
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Cost and schedule are highly correlated. 
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